Enclosure-I B.Sc. PCM (Physics) SEMESTER-III Core:5 4 hours/week **Credits:4 17UPHCC05** Mathematical and **Solid State Physics** UNIT I: Vectors (12 *Hr*) Introduction to Vector and vector algebra Vectors transform Gradient The operator $Del(\nabla)$ The Divergence The Curl and their significance Fundamental theorem for Gradient for Divergences and Curls Relations between fundamental theorems UNIT II: Fourier analysis (09 Hr)Introduction • Definition and derivation of the coefficients of Fourier Series Exponential form of Fourier series and evaluation of its constants • Odd and Even series Parseval's equation and Fourier integral Application of Fourier integral as wave packet and derivation of uncertainty principle • Applications of Fourier analysis **UNIT III:** Solid state (10 Hr)Introduction Forces between atoms Bonding energy Bonding in solids Ionic bonds and Ionic crystals Properties of Ionic Solids Covalent bonds, Covalent crystals and its properties Metallic bond Molecular bond : Hydrogen and Vander walls Bond Comparison between various bonds

Shree M. & N. Virani Science College, Rajkot - B.Sc. Physics

Page 1 of 10

- Electron drift in electric field
- Classical Free electron theory of metal
- Band theory of metals and classification of conductors , Insulator and semiconductor

UNIT IV: Crystallography

- Introduction
- Concept of lattice, Primitive and unit cell
- Bravais lattice in three dimension
- Seven crystal system
- Miller indices of cubic planner and directions
- Elementary crystal system (NaCl, ZNS and Diamond)
- Hexagonal packed structure

UNIT V: X - Rays

(12 Hr)

(10 *Hr*)

- Origin of X Ray
- Properties of X Ray
- X Ray Spectra
- Coolidge tube method
- Intensity measurement technique
- Laues Spots
- Bragg's law and Bragg spectrometer
- Application of X Ray

Text Book:

- Mathematical Physics by B.S. Rajput
- Solid state Physics by C. Kittel

Reference Books:

- Mathematical Physics by Jyoti Kumar
- Introduction to Modern Solid State Physics by Yuri M. Galperin

- Exp.1. Determination of crystal structure by X Ray film
- Exp.2. Young Modulus by bending.
- Exp.3. Energy band gap by thermister
- Exp.4. M.I of a Flywheel
- Exp.5. Fourier analysis of given wave form
- Exp.6. Determination of temperature coefficient of resistivity of given semiconductor.
- Exp.7. Fabrication I: Zener diode as voltage regulator
- Exp.8. Fabrication II: Full wave rectifier
- Exp.9. To determine thermal conductivity of given bad conductor
- Exp.10.Detraction grating

B.Sc. PCM (Physics)

SEMESTER-IV

		5111125	1 LIN-1 V	
17UPH	CC07	Electro and Magneto static & Electronics	4 hours/week	Credits:4
UNIT I:	<i>Electro</i> Introduct	<i>static</i> ion		(10 Hr)
•	Coulomb	s law ,Electric Field		
•	Continuo	ous charge distribution		
•	Field line	es and flux		
•	Divergen	ice of electric field and Ga	uss law	
•	Curl of E	lectric filed		
•	Electrica	l Potential		
•	Poisson a	and Laplace equation		
•	Potential	of point charge distributio	on	
•	Work and	d energy in electrostatic		
•	Energy o	f continuous charge distril	oution	
UNIT II:	Magne	to static		(8 Hr)
•	Introduct	tion		(011)
•	Magnetic	e field		
•	Magnetic	e forces		
•	Currents			
•	Biot-Sava	rt's law		
•	Divergen	ce and curl of magnetic fi	eld	
•	Comparis	son between magneto stati	c and electro static	
•	Magnetic	e vector potential		
UNIT III:	Transis	tor (B.IT)		(12 Hr)
•	Introduct	tion		()
•	Current f	lows in transistors		
•	Transisto	or circuit configuration		
•	Current a	mplification factor		
•	Leakage	current		
•	Comparia	son between three configu	ration	
•	Why CE	amplifier is preferred?		
	CE Amp	olifier:		
•	Characte	ristic of CE transistor		
•	Cut off,	active and saturation regio	on	
•	Amplific	ation action		
•	Phase rel	ation between input and o	utput	
Shree M. & N	N. Virani S	cience College, Rajkot - B	B.Sc. Physics	Page 4 of 10

- D.C. and A.C. Load Line.
- Limit of operation

UNIT IV: *Transistor Biasing*

- Operating point
- Single stage transistor amplifier
- Multi stage transistor amplifier explanation with block diagram
- Biased stabilization and its requirement
- Stability factor
- Method of transistor biasing (Fix biases, Collector to base bias, Emitter Biased and Voltage divider Biased and analysis)

UNIT V: *Field effect transistor*

- Introduction
- Types of FET
- Junction field effect transistor
- Working principle of JFET
- Schematic symbol of JFET
- Importance of JFET
- Difference between BJT and JFET
- JFET characteristics
- Parameters of JFET
- JFET single stage amplifier
- Advantages of JFET
- Introduction to MOSFET and its working
- Type of MOSFET
- Current flow in MOSFET

Text Books:

- Basic electronics by Malvino
- Properties of Matter by R Murugeshan

Reference Books:

- N N Bhargav and Kushreshtha ,Basic Electronics and Linear Circuits
- Allen Mottershead, Electronic Device and Circuits
- D.S. Mathur, S. Chand Publications, Elements Of Properties Of Matter
- C.Kittel , Introduction to Solid State Physics

(12 Hr)

(10 Hr)

17UPHCC08	Core:8 Physics Practical 4	5 hours/week	Credits: 3
-----------	-------------------------------	--------------	------------

- Exp.1. CE Transistor characteristics and parameters
- Exp.2. CE Transistor characteristics and D.C. Load Line and Q Point
- Exp.3. Deflection magnetometer
- Exp.4. Magnetic field of solenoid
- Exp.5. FET characteristics
- Exp.6. FET as a voltmeter
- Exp.7. Parameters of FET
- Exp.8. Fabrication of regulated power supply using 3 Pin regulation and its Load Characteristics
- Exp.9. Fabrication of Zener regulated power supply and its Load Characteristics

B.Sc. PCM (Physics)					
SEMESTER-V					
17UPHCC09		C.M & Q.M	C.M & Q.M 4 hours/week		
		Classical	Mechanics		
UNIT I:	Lagran	gian Formulation		(16 <i>Hr</i>)	
	 C I I A S C V I I 	Constraints Generalized coordinates O'Alembert's principle Lagrange' equations A general expression for ki Symmetries and laws of co Cyclic or ignorable coordi Velocity-dependent potenti Rayleigh's dissipation fun Problems	inetic energy onservation nates ial of electromagnetic field ction		
UNIT II:	Variati	onal Principle:		(16 <i>Hr</i>)	
	 I H E A I I A H S F F F 	Lagrange's and Hamilton's Hamilton's principle Equivalence of Lagrange's Advantages of the Lagrang Lagrange's undetermined r Applications of the Lagran Hamilton's equations of me come applications of the H Phase space Problems.	s Equations Configuration s and Newton's equations ian formulation-electro-me nultipliers gian method of undetermine otion familtonian formulation	pace, chanical analogies ed multiplies	
Text Books	for Unit I	& II:			
	• H • (ntroduction to Classical M Classical mechanics by Gri	lechanics by Takwale and P affith.	Puranik.	

Shree M. & N. Virani Science College, Rajkot - B.Sc. Physics

Quantum Mechanics

UNIT III: The Schrodinger equation and Stationary States Schrodinger equation (13 Hr)

- A Free Particle In One Dimension
- Generalization To Three Dimensions
- The Operator Correspondence And The Schrodinger Equation For A Particle Subject , Normalization And ψ To Forces
- Physical Interpretation On Probability Interpretation
- Non-Normalizable Wave Functions And Box Normalization
- Conservation Of Probability
- Expectation Values, Ehrenfest's Theorem
- Admissibility Conditions On The Wave Function,
- Stationary States: The Time Independent Schrodinger Equation
- A Particle In A Square Well Potential, Bound States In A Square Well(E0)

UNIT IV: General Formalism of Wave Mechanics Schrodinger Equation and the Probability (13 Hr)

- Interpretation for an N Particle System
- The Fundamental Postulates of Wave Mechanics: (a) Representation of States (b) Representation of Dynamical Variables
- The Adjoint of an Operator, and Self Adjointness
- The Eigen value Problem; Degeneracy
- Eigen values and Eigen functions of Self-Adjoint Operators
- The Dirac-Delta function

Text Books for Unit III & IV:

- Text Book of Quantum Mechanics by Mathews and Venkateshan
- Quantum Mechanics: Theory and Applications by A. K. Ghatak & Loknathan

Reference Books:

- Mathematical Physics P.K.Chattopadhyay
- Mathematical methods in Physical Science M.L.Bose, John Willy & Sons
- Classical Mechanics Gupta, Kumar and Sharma. Pragati Prakashan, Meerut, India
- Classical Mechanics Goldstein
- Quantum Mechanics Ghatak and Loknathan, Macmillan India Ltd., Delhi
- Quantum Mechanics Ajoy Ghatak
- Elements of Quantum Mechanics Kamal Singh and S.P.Singh, S.Chand Co.

17UPHCC10	Self study (Recent trends in physics)	1 hours/week	Credits:4
-----------	--	--------------	-----------

Different topics on recent trends in physics will be assigned to students (On individual base or in group)

17UPHDC01	Optics , statistical Mechanics , Spectroscopy	4 hours/week	Credits:4
17UPHDC02	Solid State Physics	4 hours/week	Credits:4
17UPHCC 11	CBT		Credits:2
17UPHCC 12	Practical (C.M. & Q.M.)	9 hours/week	Credits:3
17UPHDC03	Practical	6 hours/week	Credits:2
17UPHDC04	Practical	6 hours/week	Credits:2

SEMESTER-VI			
17UPHCC13	Electrodynamics and Nuclear Physics	4 hours/week	Credits:4
17UPHDC05	Electronics	4 hours/week	Credits:4
17UPHDC06	Electronics and Communication	4 hours/week	Credits:4
17UPHCC14	Practical Electrodynamics and Nuclear Physics	9 hours/week	Credits:4
17UPHDC07	Practical Electronics	5 hours/week	Credits:2
17UPHDC08	Practical Electronics and Communication	5 hours/week	Credits:2
17UPHCC15	Project/Internship/Tra	ining 6 hours/week	Credits:2