Shree M. & N. Virani Science College (Autonomous), Rajkot Department of Applied Microbiology SCHEME OF INSTRUCTION AND EXAMINATIONS M.Sc. Microbiology

Semester- IV										
Course		Hrs of Instruction / 3		Exam	Max Marks			Credi		
Course	Course		week	Т	Duratio	CI	SE	Tota	a t	
		Th	Pr	ı u	II (III 5)	Α	Е	1		
Part-I: Core										
19PMBCC401	Core13 : Agricultural Microbiology	4	2	-	3	90	60	150	4+1	
19PMBCC402	MBCC402 Project / Internship/ Training		18		3	200	100	300	9	
Discipline Spec	cific Elective – Core (T	heory	y)							
19PMBDC401/ 19PMBDC402Discipline Specific Elective- Pharmaceutical Microbiology /Advanced Molecular Techniques		4	2	-	2.5	50	50	100	4+1	
Total			30					550	19	
TOTAL OF ALL SEMESTERS								2600	96	

Feedback of faculties over Sem IV

Sr No.	Name of faculty member	Course Name	Suggested changes
1	Dr. Shraddha Shukla	Core13: Agricultural Microbiology	Minor Revision in module 3 and 4
2	Abhijeet Joshi	Discipline Specific Elective- Pharmaceutical Microbiology	No change
3	Dr. Debashis Banerjee	Discipline Specific Elective- Advanced Molecular Techniques	Minor revision

Pro	iect /	Interi	nshin	/Tra	ining
I I V	Juli	Interi	usmp		mining

SN.	Name of faculty	Course Name	Suggested changes
		18MMBCC401 Core 13:	
		Agricultural Microbiology	
		Module 3: Harmful	Module 3: Harmful effect of
		effect of microbes on	microbes on plant
1	Dr. Shraddha Shukla	 plant Classification of plant diseases Recognition and entry of pathogens into host cells Alteration of host behavior by pathogen Molecular mechanisms of disease diagnosis Resistance mechanisms in plants: Systemic resistance Module 4: Plant disease mechanism Molecular mechanism of disease diagnosis. Resistance Mechanism in Plants: Systemic Resistance Resistance genes: Phytoalexins. Role of PR and cry Proteins in plant disease control Signaling Mechanisms of ulart homeses 	 What is a disease and what causes disease, pathogenesis, pathogenesis in relation to environment, Recognition and entry of pathogens into host cells Alteration of host behavior by pathogen, Biochemical basis of plant diseases: Enzymes and toxins in plant diseases, phytoalexins. <u>6</u> Module 4: Plant disease mechanism Resistance Mechanism in Plants: Systemic Resistance Role of PR and cry Proteins in plant disease control Genetics of host-pathogen interactions, resistance genes Signaling Mechanisms of plant hormone Molecular mechanisms of disease diagnosis
		~	Module 1:
2	Dr. Debashis Banerjee	Discipline Specific Elective- Advanced Molecular Techniques	 qPCR & RT-PCR not needed separately as 'Types of PCR' covers the two also Module 5: Practicals: i) 'DNA finger printing using PCR' can be changed to RAPD ii) Southern and Western Blotting can be given as full practicals and not only as Demo

4

Semester IV

18MMBCC401	Core 13: Agricultural Microbiology	4 + 2 hrs/wk	4 + 1 Credits
			1

Course Description:

The course deals with soil, microorganisms and its interaction with plants. It explains fundamental concepts deals with plant growth promotion and disease control. The course appreciates the practical aspect of plant growth promoting microorganisms and isolation, identification and control of important plant pathogens.

Course Purpose:

The course makes the students understand the basics of soil with its interaction and applications. The course provides the student in depth knowledge on plant growth promotion. It also makes the students understand the behavior of plants after pathogen attack and preventive measures for it.

Course Outcomes: Upon completion of this course the learner will be able to					
CO NO.	CO Statement	Bloom's Taxonomy Level (K1 to K5)			
CO1	Show soil and its characteristics	K3			
CO2	Choose microorganisms in soil as per their role in agriculture	К3			
CO3	Produce biofertilizer and biopesticides	K5			
CO4	Differentiate Plant Microbe interaction	K4			
CO5	Summarize harmful interaction between plant and microbes	K2			

Module 1: Microbes in Soil

12 hrs

• Role of Microbes in soil

Decomposition of organic matter by microorganisms

Role of Microbes in evaluation and improvement of soil

Rhizosphere Microorganisms : Phyllosphere, Spermosphere and Rhizoplane

• Factors affecting Rhizosphere Microorganisms

Module 2: Biofertilizer and Biopesticides

•Biofertilizer -types, production and quality control.

•Cultivation and mass production of bioinoculants- Azotobacter, Rhizobium,

•Phosphate solubilising microorganisms.

• Carrier-based inoculants -production and applications.

Biopesticides – types and applications (*Bacillus thuringiensis*, *Trichoderma harzianum*)

Module 3: Harmful effect of microbes on plant	12 hrs
• What is a disease and what causes disease,	
• pathogenesis, pathogenesis in relation to environment,	
Recognition and entry of pathogens into host cells	
• Alteration of host behavior by pathogen,	
Biochemical basis of plant diseases: Enzymes and toxins in plant diseases, phytoalexins	
Module 4: Plant disease mechanism	12 hrs
•Resistance Mechanism in Plants: Systemic Resistance	
•Role of PR and cry Proteins in plant disease control	
• Genetics of host-pathogen interactions, resistance genes	
•Signaling Mechanisms of plant hormone	
Molecular mechanisms of disease diagnosis	
Module 5: List of Practicals	24 hrs
Isolation of Siderophore producing microrganisms	
Permanent slide demonstration of VAM	
•Isolation of symbiotic Nitrogen Fixation (Rhizobium sp)	

12 hrs

Isolation of asymbiotic Nitrogen Fixation (Azotobacter sp)

Production and Quality control of biofertilizer (Azotobacter/ Rhizobium)

Production and Quality control of Phosphate Solubilizing Microorganisms

•Interactions among soil microorganisms: Antagonistic study using *Trichodermasp*

Isolation and characterization of plant pathogen from plants. (Smut/ Rust/ Mildew)
Pedagogic tools:

Class activity

Text Books:

- Rangaswami, G., Mahadevan, A. (2004). Diseases of Crop plants in India: 2nd Edition PHI publication.
- K.R. Aneja (2017) Experiments in Microbiology, Plant Pathology and Biotechnology, 2nd Edition New Age Publication.

Reference Books:

- Purohit, S.S. (2007). Microbiology-Fundamentals and Applications, 6th Edition. New Delhi: Agrobios Publications.
- Atlas, R.M., Bertha, R. (2002). Microbial Ecology, 4th Edition: Pearson Education India
- Kowalchuk, G.A., de Bruijn, F., Head, I.M., Van der Zijpp, A.J., van Elsas, J.D. Molecular Microbial Ecology Manual
- Prescott L.M, Harley J.P. And Klein D.A. (1996) Microbiology 2nd Edition Wm. C. Brown Publishers.
- R. C. Dubey and D.K. Maheshwari (2002) Practical Microbiology, 2nd Edition,-S. Chand Publications.
- Dickinson M. (2003). Molecular Plant Pathology, 1st edition, BIOS Scientific Publishers.
- 7. Alexander, M. (1991). Introduction to soil microbiology, 2nd edition. Krieger Pub Co.

- W. F. Harrigan Margaret E. McCance (2014) Laboratory Methods in Microbiology, 1st EditionAcademic Press.
- Marylynn V. Yates, Cindy H. Nakatsu, Robert V. Miller, Suresh D. Pillai (2016) Manual of Environmental Microbiology, 4th Edition, American Society for Microbiology.
- Dhananjaya P. Singh, Harikesh B. Singh, RatnaPrabha (2017) Plant-Microbe Interactions in Agro-Ecological Perspectives Volume 1: Fundamental Mechanisms, Methods and Functions, Springer.

Suggested readings / e-resources:

https://www.mooc-list.com/course/understanding-plants-part-i-what-plant-knows-coursera

Methods of Assessing the Course Outcomes:

The COs of the course will be assessed through

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total	
	Test 1	Any 2 Modules	$1^{1/2}$ hours	05 (Set for 30)	20	
	Test 2	All 4 Modules	3hours	15 (Set for 60)	20	
Α	Practical CIA 1	75% of practical completion	3hours	30 (Set for 60)	30	
В	Assignment	-	-	20	40	
С	Class activity	-	-	20	40	
		Grand Total			90	
Assignment		 Assignment 1 Assignment 2 				
Class activity		Survey report/Map project/Model making/Illustration of steps involved in production of biofertilizer				

Components of CIA: 90 marks

Suggested MOOCs

https://www.agmoocs.in/course/integrated-disease-management

https://www.agmoocs.in/course/integrated-pest-management-ipm

18MMBDC401	Discipline Specific Elective-	4 + 2	4 + 1
	Pharmaceutical Microbiology	hrs/wk	Credits

Course Description:

The course deals with role of microbiologist in pharmaceutical industry. The course enlightens the importance of regulatory authorities along with its working protocols and guidelines.

Course Purpose:

Students get acquainted with pharmaceutical technology, industrial requirement of microbial technology with standard operating procedures as per regulatory authorities Drug delivery system and drug resistance mechanism

Course Outcomes: Uponcompletion of this course the learner will be able to					
CO NO.	CO Statement	Blooms Taxonomy Level (K1 to K5)			
C01	Explain and differentiate role of different authorities in pharma industries	K2, K4			
CO2	Play a role in different sectors of pharma industries	К5			
CO3	Choose differentiate drug delivery systems	К3			
CO4	Use different parameters for quality analysis	К3			
CO5	Apply and analyzestandard operating procedures for different pharmaceutical products	K3,K4			

Module 1: Introduction to pharmaceutical industry

12 hrs

• Concept of Drugs, Medicine and Active Pharmaceutical Ingredients

• Overview of key features of Pharmacopoeias in India and United States.

Role of Food and Drug Administration in India.

• Quality Assessment of Air: AHU

Module 2: Quality Control and Sterilization 12 hrs

Microbial contamination and spoilage of sterile pharmaceutical products

Type of HEPA

Types of Clean room: Class area

Sterilization: Introduction, significance, sensitivity of microorganisms, detailed methods for sterilization processes.

Module 3: Quality Analysis

• Standard operating Protocol (SOP)

Endotoxin test methods -gel clot assay, turbidometeric assay and chromogenic methods.

Endotoxin activity --risk assessment in parenterals manufacture

• Pyrogen test –depyrogenation methods.

Module 4: Quality Assurance

• Current Good Manufacturing Practices (cGMP) in pharmaceutical industry

• Good Laboratory Practices (GLP) in pharmaceutical industry.

Quality assurance and quality management in pharmaceuticals: ISO, WHO and US FDA certification.

• Calibration and validation of equipments: Concept of IQ, OQ and PQ.

Module 5: List of Practicals

• Sterility testing of pharmaceutical products (sterile injectables and tablets)

Bacterial Endotoxin Test of pharmaceutical products (Demonstartion)

Microbial limit test (MLT) of water

Quality assessment of pharmaceutical products with special reference to regulatory Affairs

12 hrs

12 hrs

24 hrs

Quality check of HEPA filter using settle plate method

Design of Standard operating procedures for vitamins assay

• Design of Standard operating procedures for assay of chemical disinfectants.

Text books:

- Stephen P. D., Norman A. H., Sean P. G., Brendan F. G. (2011) Hugo & Russell Pharmaceutical Microbiology 8th Ed. Wiley-Blackwell Publishing house
- Vyas S. P., Dixit V. (2007) Pharmaceutical Biotechnology, CBS Publishers & Distributors
- MehraPrahlad Singh (2011) A Textbook of Pharmaceutical Microbiology, 1st edition I.K. International Publishing House Pvt. Ltd.

Reference books:

- World Health Organization. (2010) Handbook: Good Laboratory Practice (GLP): quality practices for regulated non-clinical research and development. World Health Organization.
- Selvakumar, R. (2010). Good Laboratory Practices. Indian Journal of Clinical Biochemistry. 25 (3): 221-224.
- 3. Weinberg, S. (2007). Good Laboratory Practice Regulations: CRC Press.
- Sidney H.W. Murray M. Tuckerman, W., S.Hitchings IV. Mercel D.,(2007) GoodManufacturing Practices for Pharmaceuticals, Second Edition, NC New York
- Sandle Tim (2015) Pharmaceutical Microbiology: Essentials for Quality Assurance and Quality Control. 1st Edition. Elsevier Publication

Suggested readings / e-resources:

https://www.mooc-list.com/course/essentials-good-pharmacy-practice-basicsfuturelearn

Suggested MOOCs

https://www.mooc-list.com/course/essentials-good-pharmacy-practice-basicsfuturelearn

https://www.mooc-list.com/course/essentials-good-pharmacy-practice-basicsfuturelearn

Methods of Assessing the Course Outcomes:

The COs of the course will be assessed through

Sr. No.	Compo	onent	Content	Duration (if any)	Marks	Sub Total
Α	Test 1		First Two Modules	$1^{1/2}$ hours	05 (Set for 30)	20
	Test	± 2	First Four Modules	$2^{1/2}$ hours	15 (Set for 50)	20
	Practica	ll CIA	All Practicals included in Module V	3 hours	30 (Set for 60)	15
В	Assign	ment			05	15
С	Class ac	ctivity			10	13
		_			Grand Total	50
Assign	ment	●Co	oncept mapping - 0	5		
Class a	ctivity	●On ●Sp	e-minute paper - 0 ot Test - 05	5		

Components of CIA: 50 marks

18MMBDC402	Discipline Specific Elective-: Advanced Molecular Techniques	4 + 2 hrs/wk	4 + 1 Credits

Course Description:

The course deals with use and applications of various molecular techniques. The course covers up the steps involved in isolation, purification and characterization of biologically important molecules.

Course Purpose:

Г

To enhance the skills of students in advanced molecular techniques such as PCR, Blotting, ELISA for better understanding and application of biomolecules in research and industries.

Course Outcomes: Uponcompletion of this course the learner will be able to						
CO NO.	CO Statement	Blooms Taxonomy Level (K1 to K5)				
CO1	Investigate DNA and Protein characteristics	K4				
CO2	Compare and select various techniques used in isolation and purification	K2,K4				
CO3	Plan sequential steps in genome analysis	K5				
CO4	Evaluate various protein engineering steps	K4				
C05	Produce gene copies using PCR and analyzebimolecule by blotting studies	K4,K5				

Module 1: Molecular Techniques for nucleic acids

12 hrs

• Types of PCR: qPCR, RT PCR

- Hybridization: Southern and Northern; Subtractive Hybridization
- Fluorescence in situ Hybridization
- Microarray, SAGE
- Genomics, Metagenomics, Transcriptomics and Metatranscriptomics studies

Module 2: Molecular Techniques for Proteins, Metabolites and Cells 12 hrs

- 2D Electrophoresis
- Western Blotting; Protein Sequencing
- ELISA

Chromatin immunoprecipitation (ChIP)

Fluorescence Microscopy for localization studies

Module 3: Techniques for studying molecular interactions

Co-immunoprecipitation (CIP), Tandam affinity tags (TAT) and Phage display

Fluorescent resonance energy transfer (FRET), Yeast-2-hybid and Yeast-3-hybid

Module 4: Advanced Molecular Techniques

• Spectroscopic techniques such as FT-IR

• Mass Spectrometry for analyzing proteins and metabolites

- Application of NMR in biological sciences
- Understanding protein structure by X-ray Diffraction
- Proteomics, Metaproteomics Metabolomics, Fluxomics& Systems Biology

Module 5: List of Practicals:

To perform DNA finger printing using PCR (RAPD)

To perform Southern Hybridization

To perform Western Blotting

• To study Protein crystallization

• To analyze functional groups of a compound using FT-IR spectra.

Text Books:

 T.A. Brown. (2016) Gene cloning and DNA analysis.7th Edition Wiley-Blackwell Publishing Ltd.

2. Hofmann A., Clokie S. (2018) Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology 8th Edition Cambridge University Press

Reference Books:

12 hrs

- Strauch M. A (2001) Protein–DNA Interaction: Techniques Used. John Wiley & Sons, Ltd.
- Dale J. W., Schantz M., Plant N. (2011) From genes to genomes.3rd Edition John Wiley & Sons, Ltd.
- Nicola King (2010) Methods in Molecular Biology Real Time PCR Protocols: Vol. No. 630, 2nd Edition Humana Publication
- Neus Visa and Antonio Jordán-Pla (2018) Methods in Molecular Biology Chromatin Immunoprecipitation Protocol: Vol. No. 1689 Humana Publication

Suggested readings / e-resources:

• https://www.futurelearn.com/courses/introduction-to-bacterial-genomics

Methods of Assessing the Course Outcomes:

The COs of the course will be assessed through

Components of CIA: 50 marks

Sr. No.	Compo	onent	Content	Duration (if any)	Marks	Sub Total
Α	Test 1		First Two Modules	$1^{1/2}$ hours	05 (Set for 30)	20
	Test 2		First Four Modules	2 ^{1/2} hours	15 (Set for 50)	20
	Practical CIA		All Practicals included in Module V	3 hours	30 (Set for 60)	15
В	Assignment				05	15
С	Class activity				10	15
Grand Total						
Assignment •Ca		se study - 05				
Class activity \bigcirc_{On}		le-minute paper - (ot Test - 05)5			

Suggested MOOCs

• https://nptel.ac.in/noc/individual_course.php?id=noc17-ge04

https://ocw.mit.edu/courses/health-sciences-and-technology/hst-508-quantitative-

genomics