Enclosure – III

B.Sc. MICROBIOLOGY SEMESTER – I

19UMBCC101 Core I: Fundamentals of Microbiol	logy 4hrs/wk	4 Credits
--	--------------	-----------

Course Objectives:

After successfully completing this course the student should be able to:

- 1. Identify major contributions of the early scientists and the historical milestones that laid the groundwork for modern microbiology
- 2. Understand the characteristics of major groups of microorganisms
- 3. Explain the fundamentals of microscopy and staining technique
- 4. Understand the characteristics of prokaryotic cells and eukaryotic cells
- 5. Identify, discuss and illustrate morphological features of bacterial cell and its organelles.

Unit 1: Scope and History of Microbiology

- Microbiology as a field of Biology
- History and Development of Microbiology
- The Place of Microorganisms in the living world; Distribution of Microorganisms in Nature
- Spontaneous generation versus Biogenesis; Germ Theory of disease
- Applied areas of Microbiology

Unit 2: Microscopy

- Microscopy: Introduction and Types
- Principle, Construction and working of : Bright field Microscopy, Dark field Microscopy, Fluorescent Microscopy, Phase Contrast Microscopy
- Introduction to Advanced Microscopic techniques: Confocal microscopy
- Electron Microscopy Types, working and Limitations
- Preparation of sample for Electron Microscopy

Unit 3: Staining

- Stains and staining solutions
- Types of Stains: Natural, Acidic & Basic Stains
- Chromophore & Auxochrome groups, Leuco compounds
- Theories and types of Staining
- Non Biological uses of stains

Unit 4: Major Groups of Microorganisms

- Difference between Eukaryotes, Prokaryotes and Archaea
- Major groups of Microorganisms
- Bacteria: General characteristics

(12hrs)

(12hrs)

(12hrs)

(12hrs)

- Eukaryotic Microorganisms: Fungi, Algae, Protozoa
- Viruses: Plant, Animal Viruses, Bacteriophages

Unit 5: Morphology of Bacteria

(12hrs)

- Size, Shape and Arrangement of Bacteria
- The cell wall of Bacteria Structure and chemical composition of Gram negative and Gram positive Bacteria
- Bacterial Structures Internal to Cell Wall Cell Membrane, Protoplast, Spheroplast, Membranous intrusions and intracellular membrane system, Cytoplasm, Cytoplasmic inclusions and Vacuoles, Nuclear Material
- Bacterial Structures External to Cell Wall Capsule, Flagella, Pilli, Prostheca, Shealth & Stalk
- Bacterial Spores & Cyst Types of Spore, Structure and formation of Endospores (Sporogenesis), Occurrence & Functions of Akinetes & Heterocyst

Text Books:

- Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. (2002) Microbiology. 5th Edition, Tata McGraw-Hill, New Delhi. (UNIT: 1 – 5)
- Presscott, M.J., Harley, J.P., Klein, D.A. (2008). Microbiology, 7th Edition, New York: WCB McGraw Hill publication (UNIT: 1 – 5).

- 1. Pommerville, J.C. (2013). Alcamo's Fundamentals of Microbiology, 10th Edition: Jones and Barlett learning LLC.
- 2. Black, J.G. (2005). Microbiology: Principles and Explorations. New York: Wiley publication
- 3. Tortora, G.J., Funke, B.R., Case, C.L. (2004). Microbiology: An Introduction. Singapore: Pearson Education.
- 4. Singh, R.P. (2007). General Microbiology. New Delhi: Kalyani Publishers.

19UMBCC102	Core 2: Bacteriology	4hrs/wk	4 Credits

Objectives:

At the end of the course, the student shall be able to

- 1. Understand the nutritional requirements of microbes
- 2. Explain the principle and the techniques of microbial cultivation
- 3. Comprehend various phases of bacterial lifecycle and the techniques of its measurement
- 4. Know the methods of pure culture
- 5. Understand the methods of microbial control

Unit 1: Microbial Growth and Nutrition

- Introduction and Definition of Growth, Modes of Cell division in procaryotes
- Septum Formation
- Bacterial Growth Curve
- Synchronous culture & Continuous Growth of Bacteria
- Measurement of Bacterial Growth

Unit 2: Cultivation of Bacteria and Pure Culture Techniques

- Nutritional requirements and types of Bacteria,
- Chemical and Physical requirement of Growth Bacteriological Media & their Types, Air, pH & Temperature, Cultivation of Anaerobes
- Natural Microbial Population (Mixed Cultures), Selective methods to obtain Pure Cultures
- Isolation and Preservation of pure cultures
- Cultural Characteristics

Unit 3: Control of Microbes by Physical methods

- Definitions: Sterilization, Disinfection, Sanitization, Antisepsis, Microbiocidal & Microbiostasis, Thermal Death Time, Thermal Death Point, D-Value, z-Value & F-value
- Control by Temperature:
 - •High Temperature
 - Moist Heat Autoclave, Fractional Sterilization, Boiling, Pasteurization;
 - Dry Heat Hot Air Oven, Incineration,
 - Control by Low Temperature,
 - Control by Desiccation
- Control by Radiation UV radiation, x-rays, Gamma rays and Cathode rays
- Control by Surface tension & Interfacial tension
- Control by Filtration

Unit 4: Control of Microbes by Chemical methods

- Characteristics of an Ideal Antimicrobial agent
- Phenol & Phenolic compounds, Alcohols
- Halogens Iodine & Chlorine, Heavy Metals & Dyes
- Detergents & Quaternary Ammonium Compounds, Aldehydes & Gaseous agents
- Phenol coefficient method

(12hrs)

(12hrs)

(12hrs)

(12hrs)

Unit 5: Control of Microbes by Antibiotics

- Chemotherapeutic agents and Chemotherapy, Characteristics of ideal chemotherapeutic agent
- Antibiotics and their mode of action : Inhibition of cell wall synthesis, Damage to cytoplasmic membrane, Inhibition of nucleic acid and protein synthesis, Inhibition of specific enzyme system
- Antifungal, antiviral and antitumor chemotherapeutic agents
- Microbiological assay of antibiotics
- Nonmedical uses of antibiotics

Text Books:

- 1. Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. (2002) Microbiology. 5th Edition, Tata McGraw-Hill, New Delhi. (UNIT: 1 & 2)
- 2. Powar, C.B., Daginawala, J.F. (2010). General Microbiology Vol-I. Mumbai: Himalaya Publishing House. (UNIT: 3,4 &5)

Reference Book:

1. Stanier, R.Y. (1987). General Microbiology, 5th Edition: Macmillan publication.

19UMBCC103	Core Practical – 1- Fundamentals of	6hrs/wk	2 Credits
19UNIDCC105	Microbiology and Bacteriology		

Objectives:

The course will impart

- 1. Operational skills for basic instruments used in Microbiology Laboratory
- 2. Understanding about the staining process and reagent preparation
- 3. Knowledge about the morphological properties of Microbial cell structure
- 4. To develop skills, through lab experiments, in some of the specific methodologies used in the study of bacterial growth

List of Practicals:

- 1) Good microbiological Laboratory Practices
- 2) Principles of Laboratory Sanitation
- 3) Principles, working and uses of the following laboratory instruments :
 - a) Microscope
 - b) Incubator
 - c) pH meter
 - d) Refrigerator
 - e) Colorimeter
- 4) Principles, working and uses of the following sterilizers:
 - a) Autoclave
 - b) Hot air oven
 - c) Bacteriological filters.
- 5) Preparation of glassware for sterilization and disposal of laboratory media & cultures.
- 6) Preparation of Stains and Staining Reagents.
- 7) Preparation of Culture media used in Microbiology Laboratory
- 8) Study of Permanent Slides: Bacteria, Fungi, Algae, Protozoa,
- 9) Study of bacterial motility by hanging drop method.
- 10) Monochrome Staining:
 - a) Negative Staining
 - b) Positive Staining
- 11) Gram's Staining
- 12) Special staining of bacteria:
 - a) Capsule staining Hiss's method
 - b) Cell wall staining Webb's method
 - c) Spore staining Schaeffer's method
 - d) Metachromatic granule staining Albert's method
 - e) Spirochete staining Harrie's method
- 13) Measurement of size of microorganisms by Micrometry (Demonstration)
- 14) Calibrations of microscopic measurements (Ocular & stage micrometers)
- 15) Isolation of microorganisms by various methods
- 16) Turbidometric study of growth curve of *E. coli* and derivation of Growth rate & Generation time.
- 17) Enumeration of bacteria by viable count technique.
- 18) Enumeration of bacteria by Total Count Technique.
- 19) Effect of various chemicals on microbial growth
- 20) Effect of antibiotics on microbial growth

- 1. Patel. R.J., Patel. K.R. (2009). Experimental Microbiology, Vol-I, Ahmedabad: Aditya Publications.
- 2. Patel. R.J., Patel. K.R. (2009). Experimental Microbiology, Vol-II, Ahmedabad: Aditya Publications.
- 3. Dubey, R.C., Maheshwari, D.K. (2005). Practical Microbiology. New Delhi: S. Chand & Company Limited.
- 4. Sharma, K. (2005). Manual of Microbiology Tools and Techniques. New Delhi: Ane books.
- Benson, H.J. (2002). Microbiological Applications Laboratory Manual in General Microbiology – 8th edition: MacGrow Hill Company.

B.Sc. MICROBIOLOGY SEMESTER – II

19UMBCC2	01 Core 3: Microbial Diversity	4hrs/wk	4 Credits
 Understat Identify d 	ves: g the course, the student will become competent eno nd the need and the types of microbial classification diverse varieties of microorganisms from their natur edge the economical role of microorganisms	1	
 Introduct Microbia Classifica Major chai Assessing 	uction to Microbial Diversity tion to Biodiversity- Microbial evolution and diversi al Taxonomy: Introduction and overview, Taxonomi ation systems aracteristics used in taxonomy g Microbial Phylogeny or Divisions of Life		•
• <u>Gram neg</u> o A o N o A • <u>Gram neg</u>	cyotic Diversity tion to Eubacteria <u>gative bacteria</u> – General features of: terobic/Microaerophilic motile, helical vibroid fon-motile curved bacteria terobic/Microaerophilic rods and cocci <u>gative bacteria</u> – General features of: acultative anaerobes – rods, curved and helical bacter	eria	(12hrs)
o D	Pissimilatory Sulfate reducers gative bacteria – General features of:		

(12hrs)

- Anaerobic cocci
- Phototrophic bacteria
- <u>Gram positive bacteria</u> General features of:
 - Endospore forming rods and cocci
 - Asporogenous rods
 - Mycobacteria and Actinomycetes

Unit 3: Diversity of some unusual Prokaryotes

- General Features of Bacteria with unusual morphology:
 - Budding and appendaged bacteria
 - Sheathed Bacteria
 - o Mycoplasma
- Bacteria with gliding motility,
- Rickettsia and Chlamydia
- General Features of Bacteria of extreme environments:
- Introduction to Archaea
 - Thermophiles
 - Halophiles
 - Acidophiles

- o Barophiles
- Methanogens
- Psychrophiles

Unit . 4: Eukaryotic Diversity

- Fungi: General characteristics Definition, occurrence and structure of fungi
- Salient features and Economic importance of fungi
- Algae: General Characteristics Definition, Occurrence, Ultra- Structure, Reproduction
- Economic importance of Algae
- General Characteristics Definition, Occurrence, Ultra- Structure, Reproduction and Economic importance of Protozoa

Unit . 5: Akaryotic Diversity - Viruses

- Introduction to Viruses: Definition, Historical background of virology, General features of viruses: Size, Capsids symmetry, Chemical Nature, Life cycle
- Overview of Bacterial Virus: T4 and Lambda
- Overview of plant Virus: TMV
- Overview of Animal viruses; HIV

Text Books:

- 1. Presscott, M.J., Harley, J.P., Klein, D.A. (2008). Microbiology, 7th Edition, New York: WCB McGraw Hill publication (UNIT: 1 5).
- 2. Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. (2002) Microbiology. 5th Edition, Tata McGraw-Hill, New Delhi. (UNIT: 1 5)

Reference Books:

- 1. Modi, H.A. Elementary Microbiology Vol -I, Akta Prakashan, Nadiyad.
- 2. Modi, H.A. Elementary Microbiology Vol-II, Akta Prakashan, Nadiyad.
- 3. Dubey, R.C.and Maheshwari, D.K., A Text Book of Microbiology, S. Chand Publications , New Delhi.
- 4. Tortora, Funke & Case. Microbiology-An Introduction, 8 Edition, Pearson Education, Delhi.
- 5. Powar and Daginawala, General Microbiology Vol-II. Himalaya Publishing House, Mumbai.
- 6. Atlas. R.M., Principles of Microbiology- 2nd Edition,

(12hrs)

(12hrs)

19UMBCC202	Core 4: Basic Biochemistry	4hrs/wk 4 Credits
Course Objectives:		
 Basic cellular structures The structures of polypeptides and Structure of fundate Structure and basic 	course, the student should achieve an underst acture and the special properties of water of amino acids, their chemical properties proteins. amental monosaccharides and polysaccharide ic function of nucleotides rent classes of lipids and their roles in biolog	s and their organization into
Unit 1: Basic Biochemi	-	(12hrs)
 Major Chemical Bonds, Van der V Introduction to pH 	reactions: Acid Base, Redox, Condensation-I	
Unit 2: Carbohydrates		(12hrs)
 Definition and Fu Classification of Structure and proj Types and import 	unctions of Carbohydrates	
Unit 3: Proteins		(12hrs)
Classification of IAmino acids: ClaPhysical & Chem		nary Levels
Unit 4: Lipids and Nuc	leic acids	(12hrs)
 Fatty acids: Struc Introduction and S Introduction to Na acid: A-DNA, B-D 	-	
• Introduction to R	NA & Its types	
Unit 5: Enzymes • Definition of Enz	ymes, Apoenzyme, Core Enzyme, Holo enz	(12hrs) zyme, Coenzyme, Cofactors,

- Definition of Enzymes, Apoenzyme, Core Enzyme, Holo enzyme, Coenzyme, Cofactors, Prosthetic Groups, and Classification
- Mechanism of enzyme action Active Sites, Activation Energy, Lock & Key Model, Induced Fit model
- Factors affecting enzyme activity
- Enzyme inhibition
- Phenotypic and genotypic regulation of Enzymes

Text Book:

- 1. Atlas, R.M., Bartha, R. (1997). Microbial Ecology, 4th Edition: Benjamin Cummings publication (UNIT: 1)
- 2. Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. (2002) Microbiology. 5th Edition, Tata McGraw-Hill, New Delhi. (UNIT: 2 5)
- 3. Powar, C.B., Daginawala, J.F. (2010). General Microbiology Vol-I. Mumbai: Himalaya Publishing House. (UNIT: 2 5)

- 1. Conn E.E., Stumpf P.K. (1989). Outlines of Biochemistry. Wiley publication.
- 2. Stanier, R.Y. (1987). General Microbiology, 5th Edition: Macmillan publication.
- 3. Nelson, D.L., Cox, M.M. (2013). Lehninger: Principles of Biochemistry. W.H. Freeman publication.
- 4. Satyanarayan, U. (2008). Biotechnology. Kolkata, West Bengal: Books and allied (P) Ltd

 Communication. Understand intracellular signalling cascades and their impact on cellular activit cytoskeleton rearrangements, motility and changes in gene expression. Understand mechanisms of cell cycle regulation. Appreciate the cellular organization of intracellular and extracellular organelles 	
 Unit 1: Cell concept and Cytology Cell concept, principal levels of cellular organization Historical aspects of Cytology Basic differences in structural organization in Prokaryotes and Eukaryotes Structure of Animal and Plant cell Endosymbiosis Theory 	(12hrs)
 Unit 2: Membrane organization, function and Cell cycle Models of cell membrane Structural organization of plasma membrane – Fluid Mosaic Model Transport of Small Molecules across cell membrane-Active and Passive Transp Transport of Macromolecules across cell membrane -Phenomenon of ex endocytosis Cell Cycle and Cell Division – Mitosis and Meiosis 	
 Unit 3: Cell wall, intercellular and intracellular transport Plant cell wall: its ultra structure and function Intracelluar junction, tight junction, intermediate junction, spot desmosome, g plasmodesmata Endoplasmic reticulum: structure, chemical nature and function Golgi apparatus: structure, chemical nature and function GERL system and its role in intra-cellular secretion 	(12hrs) gap junctions
 Unit 4: Cellular Organelles Chloroplast: Ultrastructure and function Mitochondria: structure, morphogenesis, chemical nature and functions Lysosomes, Peroxisomes and Glyoxisomes: Structure & functions Centrosomes, Centrioles, and Cytoskeletal elements Motility: Cilia and Flagella 	(12hrs)

Course Objectives:

19UMBCC203

By the end of the semester, a student should be able to:

- 1. Appreciate and understand the dynamic nature of the cell, including how it receives and responds to information from its environment.
- 2. Explain and compare different mechanisms for receptor activation and regulation.

Core 5: Cell Biology

- 3. Understand and explain how membrane chemistry and regulation are essential in cell communication.
- ling

U

U

U

U

4hrs/wk 4 Credits

Unit 5: Nucleus

- Light and electron microscopic structure of chromosome and types
- Polytene chromosome, Lampbrush chromosomes and their importance
- Nucleus and nucleolus : Ultra structure, chemical nature, nucleolar Chromosome
- Nuclear envelop: ultra structure, transport of material
- Functions of Nucleus and Nucleolus

Text Books:

- 1. De Robertis, EDP, De Robertis EMF. (2006). Cell and Molecular Biology, 8^{th} edition. Philadelphia: Lipincott Williams and Wilkins. (UNIT: 1-5)
- 2. Verma, P.S., Agrawal, V.K. (2005). Ecology, Cell Biology, Molecular Biology, Genetics. New Delhi: S. Chand and Company Limited. (UNIT: 1 5)

- 1. Presscott, M.J., Harley, J.P., Klein, D.A. (2002). Microbiology, 5th Edition. New York: WCB Mc GrawHill publication.
- 2. Stanier, R.Y. (1987). General Microbiology, 5th Edition: Macmillan publication.
- 3. Tortora, G.J., Funke, B.R., Case, C.L. (2008). Microbiology, 8th Edition: McGraw Hill Company.

Objective: The course is designed to impart practical skills and the fundamental understanding

about;

- 1. Techniques to isolate and study different microorganisms from natural samples
- 2. Qualitative and quantitative analysis of Biomolecules
- 3. Determination of enzymatic activity
- 4. Understand the structure, components and physiological processes of various types of cells and its organelles

List of Practicals:

- 1) Isolation of Gram negative bacteria from the given sample.
- 2) Identification of Gram negative bacteria from the given pure culture using biochemical media (*E.coli, Enterobacter aerogens, Proteus, Salmonella*)
- 3) Isolation of Gram positive bacteria from the given sample.
- 4) Identification of Gram positive bacteria from the given pure culture using biochemical media (*Bacillus megaterium, Bacillus subtilis, Staphylococcus aureus*)
- 5) Identification of Fungi on the basis of Morphological Characteristics.
- 6) Cultivation of yeast from different natural samples and its morphological characterization using microscopic observation.
- 7) Microscopic observation of different algae from the given samples.
- 8) Microscopic observation of different protozoa from the given sample.
- 9) Isolation and cultivation of bacteriophage of *E.coli* from the given sewage sample.
- 10) Estimation of Protein by Foiln-Lowry's Method.
- 11) Estimation of Sugar by Cole's Method.
- 12) Estimation of Reducing sugar by DNSA method
- 13) Estimation of DNA by DPA Method.
- 14) Qualitative Analysis of Carbohydrates.
- 15) Qualitative Analysis of Proteins & Amino acids.
- 16) Determination of alpha amylase activity by iodometric method.
- 17) Demonstration and study of various phases of mitosis and meiosis
- 18) Microscopic observation of plant cells from onion
- 19) Microscopic observation of Barr bodies and Drum stick
- 20) Mitochondrial staining

- 1. Jayaraman, J. (2011). Laboratory Manual in Biochemistry: New Age International Private Limited. India
- 2. Sawhney S.K., Singh, R. (2005). Introductory Practical Biochemistry: Alpha Science International.
- Cappuccino, J.G., Sherman, N. (2004). International student edition: Microbiology- A laboratory Manual 4th edition: Benjamin Cummings publications

B.Sc. MICROBIOLOGY SEMESTER - III

19UMBCC301Core 6: Biostatistics and Bioinformatics5hrs/wk5 Credits	
Course objectives:	
The goal for the Biostatistics and Bioinformatics for Basic Scientists course is to	
1. Provide an introduction to statistics and informatics methods for the analysis of dat	a
generated in biomedical research.	1
2. Teach through Practical examples covering both small-scale lab experiments and highthroughput assays.	a
 Emphasis on the basic concepts of biostatistics and bioinformatics 	
Unit 1 Introduction to Biostatistics (12hrs)	
Data Collection and presentation	
 Origin of the word, Applications of biostatistics 	
• Sampling methods, Random and non random sampling	
 Data: Types, Graphical presentation of data 	
Unit 2 Measures of Biostatistics, Probability Distributions (12hrs)	
Measures of central tendency Mean, median and mode	
• Measures of dispersion- Range, mean deviation, standard deviation, variance	
Laws of probability	
Normal distribution	
Binomial distribution, Poisson distribution	
Unit 3 Hypothesis Testing, Correlation and Regression Analysis(12hrs)• Types of hypothesisTests of significance-student's t test, F test(12hrs)• Chi-square test, ANOVA testTypes of correlation, Methods to study correlation analysis	
Methods of regression analysis	
Unit 4 Computer Science : Components and Applications (12hrs)	
• Structure of computer: Components, peripherals, uses and types	
• The window screen and parts of window, the control panel	
MS Office: MS Word, MS Powerpoint, MS Excel	
• Internet: History, Basic Concepts, Connection Types, Applications, Search Engines and E mail, Multimedia Usage in biological studies	
 Basics of HTML, Page creation and design using HTML 	
Unit 5 Bioinformatics (12hrs)	
Introduction and importance of Bioinformatics	
 Database: Introduction, Types, File formats, Primary and Secondary Biological databases, Structure databases, miscellaneous databases, Information retrieval from Biological database : ENTREZ, SRS and DBGET Sequence Alignment : FASTA, BLAST and Gap penalties 	

Sequence Alignment : FASTA, BLAST and Gap penalt
Introduction to Drug discovery and Chemi informatics

Text Books:

- 1. Banerjee P.K. (2007) Introduction to Biostatistics: S Chand Publication, New Delhi, India (UNIT: 1,2,3)
- Attwood, T.K., Parry. D.J. (2001). Introduction to Bioinformatics: Benjamin Cummings (UNIT: 4 & 5)

- 1. Andreas, D. B., Ouellette, B.F.F. (2004). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition: Wiley publication.
- 2. Misener, S. (2000). Bioinformatics Methods and Protocols: Humana Press.
- 3. Westhead D.R., Parish J.H., Twyman, R.A. (2002). Instant notes in Bioinformatics. Taylor and Francis publications.
- 4. Satyanarayan, U. (2008). Biotechnology. Kolkata, West Bengal: Books and allied (P) Ltd.

19UMBCC30	2 Core 7: Agricultural Microbiology	4hrs/wk	4 Credits
Course objective After successfully	es: y completing this course the student should be able t	:0:	
 Understand Explain the in each 	e role of soil in the sustenance of microbial life d the characteristics of major groups of microorganis e fundamentals of various geochemical cycles in th d the beneficial as well as harmful role of microbes i	e soil and the ro	ble of microbes
Unit 1: Soil as a		0	(12hrs)
Soil profilRhizosphe	on to soil n of soil- weathering of rocks, pedogenesis le and microbial diversity of soil ere and Rhizoplane factors-Physical and chemical properties of soil		
OverviewBiofertilizPlant GrovIntroducti	izers and Biopesticides of organic farming zers and Biopesticides wth Promoting Rhizobacteria on to Mycorrhizae I Pest Management		(12hrs)
GMO – DMicrobialPhytoremetry	l Sea weeds		(12hrs)
General MPlant disePlant disePlant dise	effects of microbes in Agriculture Aechanism, Propagation and control of plant disease ases by Bacteria- <u>Xanthomonas citrii</u> ases by viruses - TMV ases by fungi – Fusarium oxysporum togenic Nematods	s	(12hrs)
MicrobialZoonoticVaccines	ry Microbiology on to veterinary microbiology diseases of farm Animals: Anthrax, CJD, FMD, Ma diseases and its management for farm animals: vaccination schedule, modes of ac sease Management		(12 hrs) d side effects

• Poultry disease Management

Text Books:

- 1. Alexander, M. (1991). Introduction to Soil Microbiology: Krieger Publication. (UNIT:1)
- Motsara, M.R. Bhattacharyya, P., Srivastava, B. (1995). Biofertilizer- Technology, Marketing and Usage. New Delhi: Fertilizer Development & Consultant Organization. Rangaswami, G., Bagyaraj, D.J. (1992). Agricultural Microbiology. New Delhi: Asia Publishing House.(UNIT: 2)
- 3. Subba Rao, N.S. (1999). Biofertilizers in Agriculture and Agro forestry. New Delhi: Oxford & IBH. (UNIT: 2,3)
- Subba Rao, N.S. (1995). Soil Microorganisms and Plant Growth. New Delhi: Oxford & IBH.(UNIT:4)
- 5. Sharma S.N. Adlakha S.C (1996) Textbook of Veterinary Microbiology. Vikas Publications.(UNIT:5)

- 1. Dirk, J., Elas, V., Trevors, J.T., Wellington, E.M.H. (1997). Modern Soil Microbiology. New York: Marcel Dekker INC.
- 2. Ramanathan, N., Muthukaruppan, S.M. (2005). Environmental Microbiology. Annamalai Nagar: Om Sakthi Pathipagam.
- 3. Waiter, M.J., Morgan, N.L., Rocky, J.S., Higton, G. (1999). Industrial Microbiology: An Introduction: Wiley-Blackwell publication.

10110000202	Core 8: Food and Environmental	4hrs/wk	4 Credits
19UMBCC303	Microbiology		

Course objectives:

This course is designed to provide Instruction about

- 1. General principles of food, dairy and water Microbiology.
- 2. Food spoilage, food preservation and food commodities;
- 3. Processing in dairy for milk and milk product;
- 4. Fundamentals of drinking water and waste water treatment;
- 5. Overview of air microbiology
- 6. Role of microbes in environmental processes

Unit –1 Food Microbiology

- Microbial flora of fresh food
- Microbial spoilage of foods: Fresh foods & Canned foods, Food Borne infection & intoxication: Role of *S. aureus*, *C. botulinum & Salmonella* Spp.in food poisoning
- Preservation of foods: General principles & methods of food preservation
- Microbiological examination of food; Introduction to AGMark
- Brief introduction about fermented foods: Pickles, Sauerkraut, Silage, Sausages & Bread, Microorganisms as food: Single Cell Protein, Mushrooms and Functional foods

Unit -2 Dairy Microbiology

- Milk as a medium, normal flora of milk, Types of microorganisms in milk: Biochemical types, Pathogenic types, Temperature types
- Spoilage of milk & milk products
- Microbial analysis of milk: SPC, Direct count, MBRT, Resazurin test, Grading of milk
- Fermented milk Beverages & Manufactured Dairy Products: Starter Culture, Cheese, Yogurt, Buttermilk, Acidophilus milk, Kefir
- Preservation of milk: Principles & methods of preservation

Unit – 3 Air Microbiology

- Air flora Concept of transient air flora, droplet, droplet nuclei, and aerosols
- Monitoring and control of air flora of
 - Hospitals Research laboratories
 - Industries Food and Pharmaceutical
- Air pollution: Chemical pollutants and their sources in air
- Methods of Air sampling

• Aseptic filling areas

• Air sanitation, Air borne infections

(12hrs)

(12hrs)

(12hrs)

Unit-4 -Water Microbiology

- Microbiology of drinking water: Sanitary survey, Bacteriological evidence of pollution, Bacteriological analysis & Sampling techniques of water, Microorganisms other than Coliforms as nuisance organisms
- Process of Water purification: Sedimentation, Filtration use of Sand filters, Disinfection
- Microbiology of Waste water: Chemical and Microbial Characteristics of waste water, B.O.D., C.O.D. as indicator of quality of waste water
- Waste water treatment & Disposal Single Dwelling Process & Municipal Treatment -Primary Treatment, Secondary Treatment, Advanced & final treatment,
- Solid waste processing: Anaerobic Sludge digestion & Composting

Unit –5 Environmental Microbiology

(12hrs)

- Types of Pollutants, Sources & Effect on ecology
- Pollution by pesticides, Biomagnifications of pesticide & their Biological control
- Brief account on Water pollution (by Oil, Detergent, Heavy metal & industrial effluent) & their Biological control
- Role of microorganisms in Biodeterioration of Paper, Textiles, paints, woods & metals and their control, Bioleaching, Microbial enhanced oil recovery
- Biofuels, Bioplastics

Text Books:

- 1. Frazier, W.C., Westhoff, D.C. (1978). Food Microbiology. Tata McGraw-Hill Publishing Company. (UNIT: 1)
- Prajapati, J.B. (1995). Fundamentals of Dairy Microbiology: Ekta Publication, India (UNIT: 2)
- 3. Microbiology by Pelczar M.J. & Chain E.C.S. : 5th edition (UNIT:3 & 4)
- 4. Presscott, M.J., Harley, J.P., Klein, D.A. (2002). Microbiology, 5th Edition. New York: WCB Mc GrawHill publication. (UNIT: 5)

- 1. Manay, S., Shadaksharaswami, M. (2008). Foods: Facts and Principles. New Delhi: New Age Publishers.
- 2. Meyer, L.H. (2004). Food Chemistry. New Delhi: New Age Publishers.
- Frobisher, M. (1974). Fundamentals of Microbiology. 9th Edition. Philadelphia, PA: W. B. Saunders Company.
- 4. Swaminathan, M. (1990). Food Science, Chemistry and Experimental Foods. Mysore: Bappco Book Publishing Company.
- 5. Jay, J.J., Loessener, M.J., Golden, D.A. (2005). Modern Food Microbiology: Springer publication.

19UMBCC304	Core Practical – Applied and Analytical	6hrs/wk	3 Credits
19UNIDCC304	Microbiology		

Course objectives:

The course will impart

- 1. Technical skill for enumeration of soil, food and milk microbes
- 2. Understanding about the role of microbes in agriculture and food
- 3. Knowledge about the properties of microbes which make them important in nature .
- 4. To develop skills, through lab experiments, in some of the specific methodologies used in the study of modern food and dairy microbiology
- 5. Statistical Skills and the basic experimental know how about biostatistics and bioinformatics

List of Practicals

- 1. Enumeration of different kinds of microorganisms in soil qualitative and quantitative methods
- 2. Study of degradation of organic matter.
- 3. Isolation of rhizosphere microorganisms Isolation of nitrogen fixing microorganisms. *Rhizobium, Azospirillum* and *Azotobacter*
- 4. Isolation of Phosphate solubilizing bacteria from soil
- 5. Observation of mycorrhiza roots.
- 6. Isolation and identification of microorganisms involved in food spoilage
- 7. Isolation of microorganisms from milk and milk products and their identification
- 8. Production of fermented milk by Lactobacillus acidophilus Yogurt
- 9. Standard qualitative analysis of milk
- 10. Methylene Blue Reduction Time test for milk
- 11. Isolation of probiotics
- 12. Estimation of Dissolved oxygen
- 13. Isolation and identification of coli forms from Water by Presumptive, Confirmed & Completed test
- 14. Determination of air flora and air density from indoor & outdoor sources
- 15. Review of NCBI Portal
- 16. Review of Biological Data Bases
- 17. Demonstration on BLAST analysis
- 18. Comparison of Entrez, SRS, and DBGET retrieval
- 19. Basic use of Computer Use of Excel, Power point and Internet
- 20. Mean, Median, Mode
- 21. Standard deviation
- 22. Student t-Test
- 23. Chi square Test
- 24. ANOVA

- Adams M.R., Moss, M.O. (2008). Food Microbiology. 2nd Edition: Royal Society of Chemistry.
- 2. Banwart, G.J. (1989). Basic Food Microbiology: Springer publications.
- 3. Doyle, M.P., Buchanan, R.L. (1997). Food Microbiology: Fundamentals and Frontiers: ASM publication.
- Joshi, V.K., Pandey, A. (1999). Biotechnology: Food Fermentation Microbiology, Biochemistry and Technology. Volume 2. Emakulam: Educational Publishers & Distributors.
- 5. Prajapati, J.B. (1995). Fundamentals of Dairy Microbiology: Ekta Publication.
- 6. Garbult, J. (1997). Essentials of Food Microbiology: Hodder Arnold publication.
- 7. Wood, B.J. (2012). Microbiology of Fermented Foods. Volume I and II: Elsiever Applied Science Publication.
- 8. Robinson, R.K. (2002). Dairy Microbiology Handbook: Wiley-Blackwell publication.
- 9. Andreas, D. B., Ouellette, B.F.F. (2004). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition: Wiley publication.
- 10. Misener, S. (2000). Bioinformatics Methods and Protocols: Humana Press.
- 11. Rao, C.R. (1973). Linear Statistical Inference and its Applications. New York: Wiley publication.

B. Sc. MICROBIOLOGY SEMESTER - IV

19UMBCC401Core 9: Bacterial Metabolism4hrs/wk	4 Credits
---	-----------

Course objectives:

After successfully completing this course the student should be able to:

- 1. Understand the central metabolic reactions in a cell and an organism
- 2. Understand the mechanism of energy generation and its utilization during cellular activities
- 3. Explain the fundamentals of catabolism of different biomolecules, its mechanism and its importance
- 4. Identify the metabolic differences among various categories of bacteria.
- 5. Understand the process and mechanism of transport of molecules across the membrane for metabolic reactions

Unit 1: Introduction to Metabolism, Bioenergetics and Enzyme Kinetics (12hrs)

- General Overview of Metabolism, primary and Secondary Metabolism and their significance
- Thermodynamics –First law of thermodynamics, second law of thermodynamics
- Bioenergetics: The concept of free energy, Determination of ΔG & Energy rich compounds
- Energy metabolism: Introduction to metabolism, Role of ATP in metabolism, Role of reducing power in metabolism, Role of precursor metabolites in metabolism
- Kinetics of a single-substrate enzyme catalysed reaction, Michaelis-Menten Equation, Km, Vmax, Lineweaver–Burk plot, Turnover number, K_{cat}; Kinetics of Enzyme Inhibition; Kinetics Allosteric enzymes

Unit 2: Catabolism of Carbohydrates

- General overview of various metabolic pathways, regulations and their significance
- Glycolysis and its regulation
- Pentose phosphate pathway
- Entner-Doudrroff pathway
- Citric acid cycle and its regulation, Glyoxylate cycle

Unit 3: Metabolism of amino acids, Nucleic acids and Lipids

- Biodegradation of amino acids deamination, transamination, decarboxylation; Stickland Reactions
- Urea cycle including its regulation
- Biosynthesis of amino acids
- Biologically active amines Recycling of Purine and Pyrimidine nucleotides by salvage pathways
- Oxidation of Fatty Acids, Beta-Oxidation of Fatty Acids

(12hrs)

(12hrs)

Unit 4: Bioenergetics and Membrane Transport

- Different modes of ATP generation and comparative study of ATP (energy budget)
- Electron transport chain: Introduction, Components of ETC and energy yield, Anaerobic Respiration
- Bacterial photosynthesis; Biosynthesis of peptidoglycan
- Transport of small molecules across membrane: Active and Passive transport
- Specific Transport Systems: Mechanosensitive channels, ATP-binding cassette Transport family, Chemiosmotic-driven transport, Establishing Ion gradients, Iron transport, The phosphotransferase system

Unit 5: Some selected aspects of metabolism in specific microbial systems (12hrs)

- Chemo-autotrophs: Nitrifying Bacteria, Sulfur Oxidizers, The Iron bacteria, The Hydrogen bacteria
- The lactic acid bacteria: Patterns of carbohydrate fermentation in lactic acid bacteria
- The Enteric group and related Eubacteria: Fermentative patterns of Gram negative Eubacteria
- Archaebacteria: Energy metabolism and Carbon Assimilation in Methanogens, photophosphorylation in *Halobacterium*
- Quorum sensing

Text Books:

- 1. D.White 2^{nd} Edition. The physiology and Biochemistry of Prokaryotes (UNIT 1-5)
- 2. Stanier, R.Y. (1987). General Microbiology, 5th Edition: Macmillan publication.

- 1. Nelson, D.L., Cox, M.M. (2013). Lehninger Principles of Biochemistry. W.H. Freeman publication.
- 2. Moat, A.G., Foster. J.W., Spector, M.P. (2009). Microbial Physiology, 4th Ed: Wiley India Pvt Ltd.
- 3. Principles of Biochemistry By Lehninger
- 4. Conn E. E. and Stumpf P. K. Outlines of biochemistry by Lehninger 4th Ed.
- 5. Powar and Daginawala General Microbiology by Vol-1

19UMBCC402Core 10: Analytical Techniques4hrs/wk4 Cre
--

Course objectives:

After successfully completing this course the student should be able to:

- 1. Understand the working principle and application of various analytical techniques in the field of Bioscience
- 2. To comprehend theories and principles of various Chromatographic techniques
- 3. Understand General principles and applications of electrophoresis and Centrifugation techniques
- 4. Identify the role and the application of various molecular biology techniques in the field of Microbiology

(12hrs)

(12hrs)

(12hrs)

(12hrs)

Unit 1 Basic Analytical Technique in Biosciences

- Colorimetry and Spectrophotomerty
- Introduction to Flame Photometry and its applications
- Applications of Radioisotopes in biosciences
- Atomic spectroscopy: Principles and application of Atomic Absorption/Emission Spectrometer
- Microtomy sectioning.

Unit 2 Chromatography

- Chromatography : Theories and Principles
- Paper and Thin layer Chromatography
- Affinity and Ion Exchange Chromatography
- Partition and Size Exclusion Chromatography
- Gas Chromatography and High Performance Liquid Chromatography, HPTLC

Unit 3 Electrophoresis

- Electrophoresis : General principles, Horizontal & Vertical Gel electrophoresis, Isoelectric focusing
- Paper Electrophoresis
- Gel Electrophoresis : PAGE and AGE and PFGE,
- Capillary Electrophoresis
- Immunoelectrophoresis. Immunoblotting.

Unit 4 Centrifugation(12hrs)• Centrifugation techniques- Basic principles1• Different types of centrifuges: Analytical and Preparative1• Ultracentrifugation methods.1• Density gradient centrifugation.

Unit 5 Advanced techniques

- Nanobiotechnology: Development and applications of Bionanoparticles
- FTIR
- Spectroscopy
- Introduction to Biosensor Technology
- Targeted Drug Delivery system

Text Books:

- 1. Purohit, S.S. (2007). Microbiology-Fundamentals and Applications, 6^{th} Edition. New Delhi: Agrobios Publications. (UNIT 1-5)
- 2. Chatwal R.G., Anand, S.K. (2012). Instrumental Methods of Chemical Analysis. Mumbai: Himalaya publication

- Westhead D.R., Parish J.H., Twyman, R.A. (2002). Instant notes in Bioinformatics. Taylor and Francis publications.
- 2. Andreas, D. B., Ouellette, B.F.F. (2004). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition: Wiley publication.
- Wilson, K., Walker, J. (2010). Practical Biochemistry Principle and Technique, 7th Edition. Cambridge: Cambridge University Press.
- 4. Freifelder, D. (1982). Physical Biochemistry: Application to Biochemistry and Molecular biology, 2nd edition. San Francisco: W.H. Freeman and company.
- 5. Sadashivam, S., Manickam, A. (2004). Biochemical methods, 2nd edition. New Delhi: New Age International (P) Limited.
- Oser, B.L. (2006). Hawk's physiological chemistry. 14th Ed. New York, NY: McGraw-Hill Book Company.
- 7. Boyer, R.F. (2002). Modern Experimental Biochemistry. San Francisco: Benjamin Cummings Publ. Company.
- 8. Williams, B.D., Wilson, K. (1981). A Biologist's Guide to Principles and Techniques of Practical Biochemistry. London: Edward Arnold publications.
- 9. Upadhyay, A., Upadhyay, K., Nath, N. (2009). Biophysical Chemistry: Principles and techniques. Mumbai: Himalaya publication

19UMBCC403 Core 11: Industrial Microbiology	4hrs/wk	4 Credits	
---	---------	-----------	--

Course objectives:

The course is designed to provide to the students:

- 1. Knowledge of basic principle of fermentation process,
- 2. Insight in helping students to design, develop and operate industrial level fermentation process.
- 3. This fundamental knowledge is essential for the students to make their career in industry based on bioprocess.

Unit 1: Fermentation Technology & Industrially Important Microorganisms (12hrs)

- Basic concept: Industrial Microbiology
- Range of Fermentation Processes; Component parts a fermentation process
- Fermentation Economics; GLP and GMP
- Screening of industrially important microorganisms: Use of enrichment techniques in isolation methods; Primary & Secondary Screening; Culture Collection Centres in India and abroad
- Improvement of industrially important microbes: Application of Mutation, protoplast fusion and recombinant DNA technology

(12hrs)

(12hrs)

(12hrs)

Unit 2: Formulation of Fermentation Media

- Introduction, Types of Media and Medium formulation
- Raw materials: Crude Carbon and Nitrogen sources
- Minerals, Precursors, Growth Regulators, Buffers, Antifoam agents
- Media Optimization
- Inoculum Medium

Unit 3: Design and aseptic operation

- Introduction and basic functions of fermenter
- Types of bioreactors: Continuous stirred tank bioreactor, air lift fermenter, tower fermenter, immobilized enzyme bioreactors
- Aeration and Agitation
- Fermentation process: Batch Fermentation, Continuous fermentation and their comparative advantages and disadvantages
- Sterilization process in fermentation industries: Fermentor sterilization; Medium sterilization; Sterilization of air and feed, Aseptic operation and Containment

Unit 4: Overview of Downstream Processes

- Methods of Cell separation: Broth conditioning, Precipitation, Sedimentation,
- Centrifugation, Filtration
- Techniques of Cell Disruption: Mechanical and Non mechanical methods
- Product Recovery: Liquid-Liquid extraction, Solvent recovery, Two Phase aqueous extraction, Super critical fluid extraction; Chromatography, Drying and crystallization
- Physical, Chemical and Biological assay of fermentation products

Unit 5: Studies of selective fermentation processes

- Production of organic solvents: Ethyl alcohol
- Production of enzymes and Vitamins : Amylases and Riboflavin
- Production of antibiotics: Penicillin
- Production of amino acids and organic acids: Lysine and Citric acid
- Introduction to methods to immobilize whole cell and/ or enzymes; Applications

Text books:

- Stanbury, P.F., Whittaker, A. (1984). Principles of Fermentation Technology, 2nd Edition. Pergamon Press. (UNIT – 1-5)
- 2. Patel, A.H. (2011). Industrial Microbiology, 2nd Edition: Laxmi publication.

- Casida, L.E. (1968). Industrial Microbiology. New Delhi: New Age International Pub. (P) Limited.
- Joshi, V.K., Pandey, A. (1999). Biotechnology: Food Fermentation Microbiology, Biochemistry and Technology. Volume 2. Emakulam: Educational Publishers & Distributors.
- 3. Prescott, S.C., Dunn, C.G., Reed, G. (1982). Prescott & Dunn's Industrial Microbiology. Westport: AVI Publication.
- 4. Crueger, W., Crueger, A. (1990). A text book of Industrial Microbiology, 2nd edition: Sunderland, Mass.: Sinauer Associates

19UMBCC404	Core Practical - 4: Microbial Technology	6hrs/wk	3 Credits	1
	and Instrumentation			1

Course objectives:

The course will impart

- 1. Technical skill to the students perform various analytical methods for estimations
- 2. Hands on training on many sophisticated instruments
- 3. Understanding of upstream and downstream process in the fermentation process

List of Practical

- 1. Estimation of Protein by Bradford method
- 2. Circular paper Chromatography of Amino acids
- 3. Ascending paper chromatography of sugars
- 4. Thin Layer Chromatography of Amino acids
- 5. Agarose Gel Electrophoresis of DNA
- 6. SDS PAGE of Protein
- 7. Centrifugation techniques
- 8. Microtome usage, sectioning and staining
- 9. Primary screening of industrially important microorganisms capable of producing: Antibiotics, Organic acids, amylases
- 10. Bioassay of penicillin using B. subtilis
- 11. Laboratory fermentation of Ethyl Alcohol by *Saccharomyces cerevisiae* & its estimation
- 12. Laboratory fermentation of amylase by B. subtilis & its estimation
- 13. Sterility testing of fermentation products (Demo) Use of Sterile products for testing Microbial contamination
- 14. Immobilization of yeast cells by Ca-alginate entrapment method & determination of viability of immobilized cells by invertase activity / Gluconic acid formation. (Demo)

- 1. Jayaraman, J. (2011). Laboratory Manual in Biochemistry: New Age International Private Limited. India
- 2. Sawhney S.K., Singh, R. (2005). Introductory Practical Biochemistry: Alpha Science International.
- 3. Cuppuccino, J.G., Sherman, N. (2004). International student edition: Microbiology- A laboratory Manual 4th edition: Benjamin Cummings publications.
- 4. Baker, F.J., Breach, M.R. (1967). Handbook of Bacteriological Technique: Butterworth & Co Publishers Ltd.

B. Sc. MICROBIOLOGY SEMESTER - V

19UMBCC501Core 12: Immunology4hrs/week4 Credits

Course Objectives:

After successfully completing this course the student should be able to:

- 1. Demonstrate a comprehensive and practical understanding of basic immunological principles involved in protection mechanism.
- 2. Differentiate between innate and adaptive immunity, primary and secondary responses and identify the role of antigen presenting cells, lymphocytes, and phagocytic cells in immune responses.
- 3. Differentiate between humoral and cell mediated immunity.
- 4. Discuss Dysfunctional immunity and its consequences, Process of infection and vaccination
- 5. Principle and applications of various immune reactions in research and diagnosis

Unit 1: Immunity and Immunogen

- Types of immunity: Natural, Acquired, herd, Innate, specific
- Cells and organs of immune system : An overview
- Primary response and generation of memory
- Antigen: Immunogenicity versus antigenicity, Factors influencing Immunogenicity, Adjuvant, Epitopes and Haptens
- Antigen processing and presentation (Endogenous and Exogenous Antigens)

Unit 2: Antibody

- Antibody: Basic structure of Antibody
- Immunoglobulin classes and their Biological activities
- Epitopes and Receptors on immunoglobulin molecule
- Antibody Diversity and Clonal Selection Theory
- Overview of Monoclonal Antibody

Unit 3: Dysfunctional Immunity

- Immunodeficiency Diseases
- Hypersensitivity
- Autoimmune diseases
- Overview of Tumor immunity
- Overview of Transplantation immunity

Unit 4: Infection and Prophylaxis

- Introduction to the normal flora of healthy human host
- Host -microbe interactions: Process of Infection, Pathogenicity, Virulence and infection
- Microbial adherence: Penetration of epithelial cell layers, Events in infection following penetration
- Microbial virulence factors
- Vaccines: Conventional and Modern

(12hrs)

(12hrs)

(12hrs)

(12hrs)

Unit - 5: Haematology and Serology

- Study of Blood and Blood groups: Discovery of human blood group system
- Principle, significance and procedure of blood transfusion, Blood coagulation
- Serology In vitro antigen: antibody reaction: Strength of antigen antibody reaction: Antibody affinity and avidity
- Precipitation and Agglutination Reactions: (in fluid and gel), immunoelectrophoresis, Haemagglutination, Bacterial Agglutination, Passive Agglutination and agglutination inhibition
- Other reactions: Radioimmunoassay, ELISA, Western Blot, Immunofluoroscence

Text Books:

- J. Kuby, R. A. Goldsby, T.J.Kindt, B.A. Osborne (2013). Immunology 7th edition.
 W.H. Freeman and Company, New York (UNIT 1,2.4,5)
- P.M. Lyolyard, A. Whelan, M.W. Fanger. (2011) Instant Notes in Immunology. 3rd edition. Garland Science Taylor and Francis Group, Newyork (UNIT-3)

- C.A.Janeway, P.Travers, M. Walport, M.J. Shlomchick. (2005). Immunology the immune system in health and Diseases. 6th edition. Garland Science Taylor and Francis Group, Newyork
- K.Murphy, P.Travers, M. Walport. (2008). Janeway's Immunology. 7th edition. Garland Science Taylor and Francis Group, Newyork
- I.Roitt.(2017). Roitt's Essential Immunology, 13th edition Blackwell Science
- J.M.Cruse, R.E.Lewis. (2009). Illustrated Dictionary of Immunology. 3rd edition. CRC Press Taylor and Francis Group, New York.
- A. K. Abbas, A. H.H.Lichtman, S.Pillai. (2017).Molecular and Cellular Immunity. 9th edition. Elsevier
- R. M. Atlas (2015). Principles of Microbiology. 2nd edition. Wm.C.Brown Publishers
- Prescott , Harley , Klein (2007). Microbiology 5th edition. McGraw-Hill Publishers

19UMBCC502 Core 13: Medical Microbiology	1Hr/week	4 Credits
--	----------	-----------

Course Objectives:

By the end of the semester, a student should be able to:

- 1. Appreciate and understand the concept of medical microbiology.
- 2. Understand and explain epidemiology of the diseases caused by the various pathogens
- 3. Understand causes, treatment, pathogenicity of viruses, bacteria fungi and parasites

Unit 1: Epidemiology and host –parasite relationship

• Definitions: Signs, symptoms and syndrome of disease, stages of infectious diseasesincubation period, prodromal phase, Invasive phase, decline phase

(12hrs)

(12hrs)

- Infection and their types
- Bacteraemia, septicaemia, pyamia, toxaemia and Viremia
- Epidemic, Endemic, Pandemic, Zoonotic and Exotic
- Dynamics of disease transmission: Causative or etiological agents, sources of reservoir of infection

Unit 2: Study of pathogenic organisms: Bacteria and Bacteria like organisms (12hrs)

Morphology, cultural characteristics, biochemical characteristics, serology, lab diagnosis and treatments of

- Enteric pathogens (Shigella and Salmonella)
- Pyogenic organisms Staphylococcus and Streptococcus
- Mycobacterium tuberculosis and Mycobacterium leprae
- Rickettsia
- Chlamydia

Unit 3: Study of pathogenic organisms:

Morphology, cultural characteristics, serology & lab diagnosis of :

- Parasites : Plasmodium, Giardia and entamoba
- Fungus : Candida and Aspergillus
- Spirochetes Treponema, Leptospira
- Metazoan diseases Ascariasis and Filariasis
- Tuleremia

Unit 4: Viral diseases and their diagnosis with treatments (12hrs)

Symptoms, diagnosis and treatments of:

- Hepatitis: Hepatitis A & B viruses
- Influenza and Measles
- Chicken Pox
- Rabies
- AIDS and Ebola viruses

Unit 5: Advanced techniques

- Bioavailability of Drug
- Collection, transport and preliminary processing of Clinical pathogens
- Rapid methods of identification, Molecular methods of identification
- Gene Therapy

Text Book

 C. K. J. Paniker, Anathanarayan and Paniker's text book of Microbiology (2013) 8th Edition, Orient Longman (UNIT-1-5)

- 1. Tortora, G.J., Funke, B.R., Case, C.L, 2010. Microbiology: An introduction 10th Edition, Benjamin Pub. Co. NY
- Chakraborty, P., 2007 A textbook of Microbiology, 2nd Edition New Central Book Agency, India.
- 3. Samuel Baron, Medical Microbiology. Fourth edition (1996) University of Texas Medical Branch of Galvesion
- 4. K. Ryan and C. G. Ray, Sherri's Medical Microbiology: an Introduction to infectious diseases. (2004) McGraw hill Publication 4th edition

19UMBCC503	Core 14 Phycology (Self Study)	4hrs/week 4 Credits

Course Objectives:

The course entitled as above is designed to

- 1. Enlighten the students about general features of algae ; their distribution;
- 2. Acquire a consolidated overview on different major groups of algae
- 3. Recognize the importance of algae from economic values

Understand the major differences among varied range of thallus organization and pigment system

Unit 1: General account	(12hrs)
General characteristics & distribution	
Classification & range of thallus organization	
Cell components & Pigment system	
Motility & Mode of reproduction	
Economic importance	
Unit 2 : Blue Green algae	(12hrs)
• General features & distribution	
 Major groups up to class 	
Range of vegetative structure	
• Cell structure & special features (heterocyst, hormogone, akinete)	
Mode of reproduction & Economic importance	
• Unit 3 : Diatoms	(12hrs)
General characteristics	
Distribution	
Cell structure and its components	
Motility and mode of reproduction	
Economic importance of diatoms	
Unit 4: Green algae	(12hrs)
General characteristics & distribution	, , , , , , , , , , , , , , , , , , ,
Classification & cell structure	
Pigment system & motility	
Mode of reproduction	
Economic importance	
Unit 5 : Brown & Red algae	(12hrs)
General features	()
Major groups upto class	
Cell structure and Pigment system	
Mode of reproduction	
Economic importance	

Text Books:

• Sharma O.P. (2011). Textbook of Algae, 1st Edition, McGraw-Hill Education New Delhi (UNIT-1-5)

REFERENCE BOOKS:

- Dubey R.C. and Maheshwari, D.K. 2010. A Textbook of Microbiology
 3rd ed., S. Chand & Co, Ram Nagar, New Delhi, p. 1034. ISBN 81-219-2620
- Pelczar, M.J., Chan, E.C.S., Kreig,N.R. (2002).Microbiology, 5th Edition, New Delhi; Tata Mc Graw Hill Publishing Co. Ltd.
- Sundara Rajan S (2003). College Microbiology. Volume 1 & 2. Revised Edition, Vardhana Publications, Bangalore
- Prescott, L.M., J.P. Harley and D.A .Klein (2015). Microbiology, 7th Edition, WM, C Brown Publishers.

19UMBDC501	DSE-Core 1 –Mycology and Virology	4hrs/week	4Credits
Course objective	s:		
This course is des	igned to provide Instruction about		
 Different Mode of 	features and characteristics of fungi and virus classes of fungi and viruses fungal nutrition, reproduction and propagatio on and enumeration techniques for viruses		
Unit 1: General	characteristics of Fungi		(12 hrs))
MorphologSpecial str	efinition and place in the living world gical features of fungi uctural modifications crition and growth: ociations		
Unit 2: Fungal cl	assification and reproduction		(12 hrs)
Fungal Cla		ți, Nine class C	lassification of
 General m LHT Class Viral Nor Lytic Cyc 	tion to Bacterial viruses orphology, occurrence and types ssification system nenclature system ele: T4 bacteriophage c Cycle: Lambda phage, Mu Phage		(12 hrs)
General mAnimal vinViruses an	ion and Multiplication of Plant Viruses TM		(12 hrs)
Animal vir tissue cultPlant virusBacterial	on & Enumeration of viruses rus cultivation: Direct Animal, Use of Organi ure cultivation: Plant tissue culture, Direct inocu virus Cultivation: Plaque method on of Viruses: Latex droplet method, Plaque a	lation	

determination assay, Haemagglutination assay, Particle count and infectivity

• Cytopathic effects

Text Books:

- 1. An Introduction to Fungi- (2nd revised edition) H.C.Dubey, Vikas publishing House Pvt. Ltd (UNIT-1,2)
- C.J.Alexopoulos, C.W.Mims, 2007 Introductory Mycology 4rd edition Wiley Eastern limited (UNIT-1-2)
- 3. Powar and Daginawala 2012 General Microbiology –Vol. 2, Himalaya Publishing House (UNIT-3,4)
- 4. S.B. Biswas & Amita Biswas An Introduction to Viruses 4th revised edition, *Vikas* Publishing House (P) Ltd., 2006. ISBN 10: 0706982207 / ISBN 13: 9780706982206. (UNIT-5)

Reference Book:

- Microbiology Fundamentals and Applications 7th edition S.S.Purohit, Agrobios India Publishers
- 2. L.M. Prescott & Harley, Klein McGrow Hill 2015 Microbiology 7th Edition International Edition
- 3. Microbiology (international student edition) Michael Pelczar JR, E.C.S. Chan, Noel R. Krieg, McGraw-Hill publication

Objectives:

- 1. For better perception in pharmaceutical microbiology standards
- 2. To understand industrial requirement of microbial technology
- 3. To get better opportunities in pharmaceutical industry/laboratories/ Research institutes
- 4. To be equipped with standard operating procedures as per regulatory authorities

Unit 1: Total Quality Management System	(12hrs)
Basic concept of Total quality management	
Importance of quality	
Components of TQM	
Advantages of quality	
Types of Quality measures	
Unit 2: Quality Assurance	(12hrs)
Hazard and risk analysis in pharmaceutical products	
Personnel's in Quality assurance	
• Functions of quality assurance	
Organizational setup in QA	
• Importance of QA	
Unit 3: Quality Control	(12hrs)
• Definition : Quality Control and its types in various industries	
Principles of quality control	
Methods of quality control in food industry	
• Methods of quality control in Pharma industry	
Corrective and Preventive actions	
Unit 4: Quality Audits and inspections	(12hrs)
Self inspections and internal assessments	
Purpose of audits	
• Types of Audit	
Methods to carry out audits	
Regulatory Compliance	
Unit 5: Regulatory guidelines on Quality systems in industry	(12 hrs)
Regulatory bodies in industries	
• FDA, USFDA, FSSAI and ISO	
Quality Standards in India : ISI, AGMARKS	
Commodity based standards	

• Some case study

Text Book

- Quality Assurance in Microbiology by Rajesh Bhatia, Rattan Lal Ihhpunjani. CBS publishers & distributors, New Delhi.(UNIT-1-5)
- Good manufacturing practices for Pharmaceuticals By Sydney H. Willing, Murray M. Tuckerman, Willam S. Hitchings IV. Second edition Mercel Dekker NC New York (UNIT-1-5)

Reference Book

- Vyas S. P., Dixit V. (2007) Pharmaceutical Biotechnology, CBS Publishers & Distributors
- Stephen P. D., Norman A. H., Sean P. G., Brendan F. G. (2011) Hugo & Russell Pharmaceutical Microbiology 8th Ed. Wiley-Blackwell Publishing house
- John S. Wolfson and David C. Hooper, (1989) Quinolone antimicrobial agents. American Society for Microbiology, Washington.
- Cooper M. S. (1972) Quality control in the Pharmaceutical Industry Vol.2 Academic Press Inc.
- Sidney H.W. Murray M. Tuckerman, W., S. Hitchings IV. Mercel D.,(2007) Good Manufacturing Practices for Pharmaceuticals, Second Edition, NC New York

After completing this course, Students will be able to:

- 1. Collect blood samples and other clinical samples
- 2. Perform various serological and haematological diagnostic tests
- 3. Understand the significance of blood count, various blood components and their analysis
- 4. Isolate pathogens from samples and identify them

List of Practicals

- 1. Study of serological and hematological reactions
 - a. Agglutination (blood grouping, Serodiagnosis of enteric fever by Widal test)
 - b. Serodiagnosis of syphilis by RPR Test
 - c. Total count of RBC and WBC
 - d. Differential count of WBC
 - e. Haemoglobin estimation by Sahli's method
 - f. Bleeding time by filter paper technique and clotting time by capillary method
 - g. Erythrocyte Sedimentation Rate (ESR-demonstration)
- 2. Blood Chemistry
 - a. Blood sugar estimation by GOD / POD method
 - b. Blood urea by DAM method
 - c. Serum bilirubin estimation
 - d. Cholesterol estimation
 - e. Ouchterlony Double Diffusion (Demonstration)
- 3. Physical, Chemical and Microscopic examination of Clinical samples urine, stool, pus, Sputum
- 4. Isolation, identification of following pathogens from clinical Samples: *E. coli, Salmonella spp., Pseudomonas spp., Proteus spp., Shigella spp., Staphylococcus spp, Streptococcus spp.*(for identification use of keys as well as Bergey's Manual is recommended)
- Study of growth characters of isolated pathogens on following media: Mannitol Salt Agar, Wilson Blair agar, Salmonella Shigella agar, Glucose azide medium, Cetrimide agar, TSI agar

Reference book

- 1. Broude AI: Medical Microbiology and Infectious Diseases, WB Saunders Co.
- Jawetz, Melnick & Adelberg's: Medical Microbiology, 26th Edition, Mc Graw Hill Companies, a LANGE medical book.
- 3. Chapel and Haeney: Essentials of Clinical Immunology, Blackwell Scientific Publications.
- 4. Forbes BA, Sahm DF and Weissfeld AS: Bailey & Scott's Diagnostic Microbiology, Mosby

19UMBDC503	DSE-Core 1 –Practical: -Mycology and Virology	3hrs/week	1Credits	
------------	--	-----------	----------	--

The course is designed to develop below mentioned skill in the student:

- 1. Identify various fungi on the basis of morphological characters
- 2. Distinguish different parts of fungal thallus
- 3. Cultivation techniques of fungi from various samples
- 4. Cultivation techniques for Coliphage

List of Practical

- 1. Microscopic observation of permanent slides of various fungi
- 2. Isolation and Cultivation of fungi from soil
- 3. Isolation of fungi from natural deteriorated samples
- 4. Study of antimicrobial effect of fungi on laboratory bacteria by plate method
- 5. Isolation of Bacteriaophage of E.coli

Reference Book:

1. Cappuccino, J.G., Sherman, N. (2004). International student edition: Microbiology- A laboratory Manual 4th edition: Benjamin Cummings publications

19UMBDC504	DSE-Core 1 –Practical: -Quality Assurance and Quality Control	3hrs/week	1Credits	
------------	--	-----------	----------	--

The student shall be able to:

- 1. Acquire skills Quality management system
- 2. Understand the role of quality in human life and its role in betterment of society
- 3. Identify different domains of industry in quality systems like food, pharma etc.

List of Practicals

- 1. To check the quality of packed food products as per standard protocol of microbiology.
- 2. Testing for microbial contamination and sterility of the food products in packed food and packaged drinking water
- 3. Check regulatory guidelines on packaging materials and codes for assurance in quality
- 4. Study of various pharmaceutical packaged products

Reference Books

 Quality Assurance in Microbiology by Rajesh Bhatia, Rattan Lal Ihhpunjani. CBS publishers & distributors, New Delhi.

B.Sc Microbiology Semester - VI

19UMBCC601	Core 16: Molecular Biology	4hrs/week	4 Credits
Objectives			1
After completion	of this course, student will be able to:		
 Understand th Describe the r Develop know 	the basic concept and scope of recombinant DNA terms in function of various Enzymes and Vectors used in methods used in selection, screening & analysis of vledge of the genomic and cDNA cloning strategies are application and ethical aspects of using RDT in c	n Gene manipu recombinants s	
	ar genetics and organization of genetic materials of central dogma		(12hrs)
• DNA as g	enetic material: experimental evidences		
• Different	forms of DNA		
	organization of Eubacteria and Archaebacteria		
• Mendeliar	n Laws		
Unit: 2 Replicat	ion and Recombination		(12 hrs)
• Experiment	ntal evidences of Replication and enzymes involve	d in DNA Repl	ication
Process of	f Replication in Prokaryotes		
• Regulation	n of Replication		
Process of transduction	f Recombination- mechanism of gene transfer- Tran on	nsformation, C	onjugation,
• Transposa	ble elements		
Unit: 3 Transcri	ption		(12 hrs)
• Enzymes	involved in Transcription of Prokaryotes		· · ·
• Process of	f Transcription in Prokaryotes and its inhibitors		
• Types of I	RNA molecules and Post transcriptional modification	on	
Regulation	n of gene expression at transcriptional level in prok	aryotes	
• Unit: 4 Translati	ions		(12 hrs)
Genetic co			(12
	arious RNA and Ribosome in Protein sysnthesis		
	f Translation in Prokaryotes and its inhibitors		
	lational modification		
	hing factures of prokaryatic translation		

• Distinguishing features of prokaryotic translation

Unit: 5 Mutations and Repair

- Occurrence, kinds of Mutation, spontaneous & induced Mutation
- Mutagens, detection of Mutation Lethal Mutations, Biochemical Mutations
- Phenotypic effects of Mutation and Molecular basis of Mutation
- Significance & Practical applications of Mutation
- DNA Repair-Types and mechanism

Text Books

- 1. Watson JD, Baker TA, Bell SP, Gann A, Levine M and Losick R (2014) Molecular Biology of the Gene, 7th edition, Cold Spring Harbour Lab. Press, Pearson Publication (UNIT-1-5)
- 2. De Robertis EDP and De Robertis EMF (2006) Cell and Molecular Biology, 8th edition. Lippincott Williams and Wilkins, Philadelphia

Reference books

- 1. Karp G (2010) Cell and Molecular Biology: Concepts and Experiments, 6th edition, John Wiley & Sons. Inc.
- Sambrook J and Russell DW. (2001). Molecular Cloning: A Laboratory Manual. 4th Edition, Cold Spring Harbour Laboratory press.
- 3. Krebs J, Goldstein E, Kilpatrick S (2013). Lewin's Essential Genes, 3rd Ed., Jones and Bartlett Learning
- 4. Gardner EJ, Simmons MJ, Snustad DP (2008). Principles of Genetics. 8th Ed. Wiley-India
- 5. Becker WM, Kleinsmith LJ, Hardin J and Bertoni GP (2016) The World of the Cell, 9th edition, Pearson Benjamin Cummings Publishing, San Francisco

Objectives

After completion of this course, student will be able to:

- 1. Understand the basic concept and scope of recombinant DNA technology
- 2. Understand the function of various Enzymes and Vectors used in Gene manipulation
- 3. Describe the methods used in selection, screening & analysis of recombinants
- 4. Develop knowledge of the genomic and cDNA cloning strategies
- 5. Understand the application and ethical aspects of using RDT in developing products.

Unit 1: Introduction to Recombinant DNA Technology

- Introduction to RDT
- History and relevant landmarks in the development of RDT
- Scope of RDT in biotechnology and human welfare: Transgenic plants: BT cotton, Genetically modified Food, Genetically Modified Organism, Scientific and ethical issues regarding GM food/organism, Gene Therapy

(12 hrs)

(12 hrs)

(12 hrs)

- Terminologies associated with RDT: Overview of cDNA, Clone, Gene, Genome, Vector, Recombinant, Genemap, Transgenics
- Future of RDT

Unit 2: Tools for RDT: Enzymes, Vector and Host

- Restriction Endonuclease: Definition, nomenclature, mechanism, types and application
- Ligase: Definition, mechanism, application
- Other essential enzymes: DNA and RNA polymerase, Reverse Transcriptase.
- Vectors: Definition, properties, types.
 - a) Plasmid vector
 - b) Bacteriophage vector
 - c) Shuttle Vector
 - d) Cosmid Vector
 - e) Yeast Vector: YAC
 - f) Vector for Plant: Agrobacterium
 - g) Vector for animal: SV40
- Selection of suitable host

Unit 3: Isolation of target DNA and Cloning Strategies

- Isolation of DNA and selection of target gene.
- Construction of genomic Library
- Construction of cDNA Library
- Methods of Cloning
- PCR: As alternative to genomic DNA/ cDNA cloning

Unit 4: Expression, Screening and Selection of recombinants

- Transformation of r-DNA to suitable host
- Expression of recombinant in suitable host: prokaryotic and eukaryotic.
- Basic techniques for screening and selection of the clones
- Sequence-dependent screening of recombinants: Hybridization and PCR
- Identification of DNA marker: RAPD, AFLP

Unit 5 Molecular Biology Techniques

(12hrs)

- DNA sequencing: Principles and Methods, Automated DNA sequence Analyzer
- Blotting techniques and FISH
- RFLP, RAPD, VNTR, STR and SNP analysis, ARDRA
- Chemical synthesis of DNA
- PCR Technology: Principle, Methods and Applications

Text Book

 R.C.Dubey (2010) A textbook of Biotechnology, S. Chand and Company, New Delhi (UNIT-1-5)

Reference book

- 1. S.B. Primrose, R.M. Twyman and R.W.Old.(2006) *Principles of Gene Manipulation*. *7th Edition*, S.B.University Press,.
- 2. B.D. Singh (2010) Biotechnology Expanding Horizons. Kalyani Publishers.
- 3. J. Sambrook and D.W. Russel.(2001) Molecular Cloning: A Laboratory Manual, Volume
- 4. Chatwal R.G., Anand, S.K. (2012). Instrumental Methods of Chemical Analysis. Mumbai: Himalaya publication
- 5. Upadhyay, A., Upadhyay, K., Nath, N. (2009). Biophysical Chemistry: Principles and techniques. Mumbai: Himalaya publication

(12 hrs)

16UMBDC601	DSE-Core 2 Microbiology and Health Care	4hrs/week	4 Credits
 Microorganism Role of Micro 	signed to provide instruction about, ns are beneficial for Human health care organisms in different fields bes in day to day life		
Unit: 1 History History o Spontane 	of Microbiology f microbiology and Health care ous generation verses Bio-generation cory of disease stulate		(12 hrs)
ProbioticCharacterCommer	ristics of probiotics rcially available probiotic products of probiotic products		(12 hrs)
MicroorgMushrooMicroorg	rganisms as food ganisms as a food source - Single cell protein om as a complete food and Nutritional level of mus ganisms in Dairy (Cheese, Yogurt, Buttermilk, Ke ganisms in fermented food (Pickles, Sauerkraut, Sin al Food	fir)	(12 hrs) Bread)
DefinitioTypes ofDefinitioTypes of	ganisms as Bio-fertilizer and Bio-pesticides n of Biofertilizer, history and milestones Bio-fertilizer and mode of application on of Biopesticide, history and milestones Bio-fertilizer and mode of application ges and limitations of Biofertilizer and Biopesticid	e	(12 hrs)
 Definitio Tradition New genuit vacc 	rganisms as Vaccines n and history of Vaccines and vaccination al Vaccines: Live, attenuates vaccines, inactivated erartion vaccines: Toxid vaccines, Recombinant V ine		(12 hrs) Vaccines, sub

- Production of Vaccines
- Pros and cons of vaccination

Text book:

- Frazier .W.C Westhoff, D.C., (2003). Food Microbiology. 18th edition Tata McGraw-Hill Publication Company (UNIt-2,3)
- Subba Rao, N.S., (1999). Bio-fertilizers in Agriculture and Agro forestry. New Delhi:Oxford IBH (UNIT-4)
- Pelczar, M.J., Chan, E.C.S., Kreig, N.R. (2003). Microbiology 5th Edition, Tata McGraw-Hill Publication Company (UNIT-1,5)

Reference book:

- Tortora, G.J., Funke, B.R., Case, C.L., (2004). Microbiology Introduction .Singapore: Pearson Education.
- Presscott, M.J., Harley, J.P., Klein, D.A. (2002). Microbiology 5th edition, New York: WCB Mc GrawHill publication

|--|

Objectives

After completion of this course, student will be able to:

- 1. Understand the concept of research and importance of studying research methodology
- 2. Gain knowledge regarding various components of research
- 3. Distinguish between various scientific documents
- 4. Understand the concept of thesis writing
- 5. Gain elementary knowledge regarding application of statistics in research

 UNIT-1: Introduction to Research Methodology Introduction to Research and Research Methodology Objective of Research Types of research Significance of research Process of Research 	(12 hrs)
 UNIT-2: Components of Research Defining research problem Designing research Sample and sampling Data Collection Data Analysis 	(12 hrs)
 UNIT-3: Scientific documents and standards Scientific Documents: Types Journals: types and properties. Publication: Types, Ethics and standards Quality of Journal: Impact Factor, Citation. Google sacholar 	(12 hrs)
 UNIT-4: Dissertation/Thesis Writing and Presentation Modes of presenting scientific data Basics of Poster Presentation 	(12 hrs)

- Thesis/Dissertation writing: overview, components and order of presentation.
- Ethics of Publication and Thesis writing

UNIT-5: Elementary statistics for Research

- Hypothesis
- Hypothesis testing
- Measures of central tendency: Mean, Mode, Median
- ANOVA
- Chi Square test

Text Book

1. C.R. Kothari.(2004) Research Methodology. 2nd Edition, New Age International Publisher. (UNIT-1-5)

16UMBCC603	Core Practical- 6 Molecular Biology	9hrs/week	3 Credits
------------	-------------------------------------	-----------	-----------

After completing this course, Students will be able to:

- 2. Isolate genetic material from different types of cells
- 3. Quantify the nucleic acid material
- 4. Perform gene transfer in bacteria using various techniques
- 5.Perform mutation in bacteria

List of Practicals

- 1 Isolation of genomic DNA from bacteria
- 2 Isolation of plasmid DNA from bacteria
- 3 Agarose gel electrophoresis of isolated DNA
- 4 Isolation of RNA from yeast cells
- 5 Quantification of DNA and RNA by specrophotometry
- 6 Determination of Tm value of DNA
- 7 Bacterial Transformation
- 8 Bacterial Conjugation
- 9 U.V induced mutagenesis
- 10 Plasmid curing by Acridine orange

Reference books

- 1 T.A.Brown, Genome-2, 2nd edition
- 2 Verma and Agrawal, Cell biology, Genetics, Molecular biology
- 3 Karp, cell and Molecular biology

After completing this course, Students will be able to:

- 1. Isolate microorganisms from different material and can study them
- 2. Can predict on the quality of the material

List of Practicals

- 1 Isolation and identification of microorganisms from butter milk
- 2 Isolation and identification of Probiotics from commercially available probiotic food
- 3 Isolation of Nitrogen fixing bacteria from root nodules
- 4 Isolation of non- symbiotic bacteria from Rhizospheric soil
- 5 Isolation and identification of fungus from fermented food (Bread)

Reference book:

1. Tortora, G.J., Funke, B.R., Case, C.L., (2004). Microbiology Introduction .Singapore: Pearson Education.

2. Presscott, M.J., Harley, J.P., Klein, D.A. (2002). Microbiology 5th edition, New York: WCB Mc GrawHill publication

List of Practicals

- 1. Writing research proposal
- 2. Protocol filling and submission
- 3. Making data analysis using statistics

Reference book:

1. C.R. Kothari.(2004) Research Methodology. 2nd Edition, New Age International Publisher.