

SARVODAYA KELAVANI SAMAJ MANAGED,

SHREE MANIBHAI VIRANI AND SMT. NAVALBEN VIRANI SCIENCE COLLEGE, An Autonomous College - Affiliated to Saurashtra University, Rajkot.

Re-Accredited at 'A' Level by NAAC STAR college Scheme & Status by MST-DBT UGC- College with Potential for Excellence (CPE) UGC-DDU KAUSHAL Kendra GAAA – Highest Grade A-1 by KCG, Government of Gujarat GPCB-Government of Gujarat approved Environment Audit Center UGC-Autonomous College

Board of Studies (BoS)

DEPARTMENT OF PHYSICS

COMPOSITION / AGENDA / NOTES / ATTENDANCE / MoM

Academic Year	Meeting Number	Date
2022-23	8	30/04/2022

Shree Manibhai Virani & Smt. Navalben Virani Science College, Rajkot (Autonomous) Affiliated to Saurashtra University, Rajkot Department of Physics

INDEX

S.No.	Title	Content	
1	Agenda of BOS	Minutes of the Meeting	
2	Enclosure-I	Revision of syllabi for DSE-Allied courses of Semester-I UG Programs.	
4	Enclosure-II	Revision of list of Examiners and Paper Setters.	

Shree Manibhai Virani & Smt. Navalben Virani Science College, Rajkot

(Autonomous)

Affiliated to Saurashtra University, Rajkot BOARD OF STUDIES- PHYSICS

Date: 30-04-2022

Time: 12:30

Shree Manibhai Virani & Smt. Navalben Virani Science College, Rajkot

(Autonomous)

Affiliated to Saurashtra University, Rajkot BOARD OF STUDIES- PHYSICS

Agenda:

- 1) Introductory remarks by Chairperson
 - Confirmation of MoM & ATR of previous BoS held on 18/12/2021
 - Departmental activities and updates
- 2) Syllabi of DSE cluster courses for Sem.-3 of B.Sc. (All other departments) Programs
- 3) Question paper pattern for DSE cluster courses for Sem.-3 of B.Sc. (All other departments) Programs.
- 4) List of paper setters and examiners for DSE cluster courses for Sem.-3 of B.Sc. (All other departments) Programs
- 5) Any other agenda with permission of the Chair

S.No.	Name of Member	Signature
1.	Dr. B S Trivedi	BAN
2.	Dr. B A Joshi	obsent
3.	Dr Dipak Dave	D.J. pare ondine
4.	Dr. H.C. Mandavia (Subject Espert)	ondine
5.	Dr. H H Joshi (V. C. Nowinger)	online
6.	Dr. Ashish Kothari	ablies

The Members Unanimously resolved to authorize the Chairperson of the BoS to finalize on the above mention agenda:

1. Welcome and introductory remarks by Chairman

Welcome to all the members of the Board of Studies to the second meeting after conferment of extension of the autonomous status (up to 2023-24) to the college by UGC.

I, as Chairperson of the BoS place on record the gratitude of the department to the previous members of this BoS for their kind and able contribution towards the effective implementation of academic autonomy.

Due to C-19 pandemic first national lockdown was observed on 22nd March 2020 followed by circumstances developed then onwards; following activities have been carried out by the department.

Hours of Sr. Instruction/ Course Credit Offered to Semester No. Week **DSE-Cluster 1:** B. Sc. (All other 1 03 Hrs/WK 3 3 Departments) Programs Physics-3

Revised syllabi framed for the bellow stated -Allied courses of Semester-3 for UG Programs. - Enclosure-I

2	DSE-Cluster 1 Practical	6 Hrs /week	2	B. Sc. (All other Departments) Programs	3
---	----------------------------	-------------	---	--	---

Annexure I

Department: Physics	s Programs: B.Sc. (Other Departments)		
	Semester – III		
Course Code	Course Title	Credits	
21UPHIDC301	Electronics and Mathematical physics	3	

Course Description:

This course covers some of fundamental concepts of different topics of Electronics and Mathematical physics which are useful for B.Sc. (Other Departments) students.

Course Purpose:

As this course is design for study B.Sc. (Other Departments) students as DSE Cluster subject different fundamental concepts of electronics and mathematical physics are covered in such a way that it can be helpful to them in future study.

Course Outcomes: Upon completion of this course, the learner will be able to		
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)
CO ₁	Vector	К3
CO ₂	Electrostatics	К3
CO ₃	Optics	К2
CO ₄	Electronics	K2
CO ₅	Digital Electronics	K1, K3

08 hrs

Module-II: Electrostatic	07 hrs
• Introduction	07 1115
• Coulomb's law	
• Electric field, Charge distribution, Field lines	
• Electric flux, Gauss's law, Application of Gauss's law	
• Electric field around infinite line of chart, Electric field around charged	
spherical shell, Electric field around charged solid sphere	
• The divergence of E, The curl of E, Electric potential	
• Poisson's and laplace equation	
Module III: Optics	09 hrs
Geometrical Optics	
 Fermat's principle, Law of reflections and refraction by Fermat's principle Dispersive power of Prism 	
Wave Optics	
• Interference, Condition for constructive and destructive interference	
• Newton's Ring	
• Interference by thin film	
Module IV: Electronics	7 hrs
Transistor biasing	
• Operating point, factors affecting Q-point, Stability factor	
• Fixed biased circuit	
• Emitter bias circuit	
Voltage divider bias	
• Single stage transistor amplifier	
• Practical circuit of transistor amplifier, Load line analysis, Voltage gain,	
Frequency response and band width	
 Special devices: Thermister and its characteristics 	
Phototransistor and its characteristics	
Madula V. Digital Floatuaniag	8 hrs
Module V: Digital Electronics	0 1115
 Logic gates and Boolean algebra Analog and digital signals 	
Analog and digital signals	
Binary number system	
 Decimal – Binary conversions, Logic gates, Combination of Logic gates – NAND and NOR gates 	
• NAND gate as universal gate, Encoders and Decoders	
• Merits and demerits of digital electronics	
 Boolean Theorems, DeMorgan's Theorems 	

Text Book:

- 1. R.Murugeshan & Kiruthiga Sivaprasath (2010). *Modern Physics*. S.Chand Comp. (For unit III to V)
- 2. R.K.Gaur, S.L.Gupta (2012). Engineering Physics. Dhanpat Rai Publications. (For unit I)
- 3. V.K.Mehta & Rohit Mehta(2014). Principles of Electronics. S.Chand Comp. (For unit II)
- 4. N Subrahmanyan, B. Lal and M. Avadhanulu (2013) A text book of Optics, S. Chand Publication
- 5. B.LTheraja (2002). Modern Physics. S Chand Publication.

Reference Books:

1. A.S. Vasudeva (2013). Modern Engineering Physics, S.Chand Company.

2. David Halliday, Robert Resnick, Jearl Walker (2013), *Halliday and Resnick Physics*, John Wiley publication.

3. Brij Lal and Subrahmaniam (2007), *Heat and Thermodynamics*. S Chand & Company Pvt Ltd

2101 IIID	C102 physics Practical 6 Hrs/Week	2 Credits
The prace	Description: tical course includes all fundamental practical of measurer rent circuit fabrication	nent , mechanics and electricity
ar	Purpose: The course of practical is develop to make student well verge to e nd measurement methodology utcomes: Upon completion of this course, the learner will	·
CO No.	CO Statement	Blooms taxonomy Level (S1 to S6)
CO No. CO ₁	CO Statement Basic measurement methods	Level
		Level (S1 to S6)
CO ₁	Basic measurement methods Basic circuit analysis	Level (S ₁ to S ₆) S1
CO ₁ CO ₂	Basic measurement methods Basic circuit analysis Current –Voltage characteristics of different of	Level (S1 to S6) S1 S1

List of Practical

- To determine prism angle and refractive index of prism.
- To determine refractive indices of mercury spectral lines using EDF prism.
- To determine dispersive power and dispersive curve of a prism.
- To determine wavelength of monochromatic light by Newton's rings.
- To determine wavelength of mercury light by diffraction grating.
- Resolving power of diffraction grating using vernier slit.
- I-V characteristic of CB amplifier.
- I-V characteristic of CE amplifier.
- I-V characteristic of CC amplifier.
- Study of maximum power transfer theorem.
- Study of multimeter.
- Low resistance by projection method.
- Low resistance by potentiometer.
- Energy gap of a thermistor.
- IV characteristic of a thermistor.
- Characteristic of photo transistor.

- Verification of truth table of AND, OR, NOT, NAND and NOR gates.
- Study of NAND gate as universal gate.
- Fabrication I Thevenin's theorem.
- Fabrication II Norton's theorem.

Text books :

- V.K.Mehta & Rohit Mehta., Principles of Electronics S.Chand Comp.
- Fundamentals Of Physics By Halliday, Resnick & Walker, Welly Publication.

Reference books :

- Modern Physics R.Murugeshan & Kiruthiga Sivaprasath, S.Chand Comp.
- . Engineering Physics R.K.Gaur, S.L.Gupta, Dhanpat Rai Publications

Reference Book: (For Practical)

- 1. C.L.Arora Practical Physics, S. Chand Comp.
- 2. Chauhan & Singh Advanced Practical Physics. Pragati Prakashan.
- 3. Experimental Physics, University Granth Nirman Board, (Gujarati Medium)
- 4. A.K.Sawhney. A Course in Electronic Measurements and Instrumentation, DhanpatRai and Co.

Pedagogic tools:

- Chalk and Board
- Power point presentation
- Seminar
- Videos

Methods of Assessment & Tools:

Components of CIE: 30 marks (Example as below)

Sr. No.	Component	Content Duration (if any) Marks		Sub Total	
Α	Test 1	$1^{\text{st}} 2 \text{ units}$ $1^{1/2} \text{ hours}$		5 (Set for 30)	20
	Test 2	All 5 units	3 hours	15 (Set for 60)	
В	Assignment	2		08	10
С	Class activity			12	
Grand Total 3			30		
Assignn	ient	 Abstract and executive summary Experimental design Concept mapping Student generated handbook Essay writing etc 			
Class ac	tivity	 Reaction paper Quiz One-minute paper 			

Situation based questionApplication card etc

Note : Any other assessment tools or methods can be adopted as per requirement of the course.