

Sarvodaya Kelavani Samaj Managed

Shri Manibhai Virani & Smt.Navalben Virani Science College, Rajkot

(Autonomous)

Affiliated to Saurashtra University, Rajkot

Reaccredited at the "A" Level (CGPA 3.28) by NAAC "STAR" College Scheme & Status by MST-DBT A College with Potential for Excellence – CPE (Phase - II) by UGC Accredited at the G-AAA Highest Grade 'A-1' Level by KCG, Govt. of Gujarat UGC-DDU KAUSHAL Kendra GPCB-Government of Gujarat approved Environmental Audit Centre

SCHEME OF LEARNING AND EVALUATION

Of

B. Sc. Biochemistry

(w.e.f June 2021)

Tenth BoS Biochemistry, 29th April, 2022

Page **1** of **22**

Appendix M Enclosure-I Shri Manibhai Virani and Smt.Navalben Virani Science College, Rajkot (Autonomous) Affiliated to Saurashtra University, Rajkot

Department of Biochemistry

B.Sc. BIOCHEMISTRY

SCHEME OF LEARNING AND EVALUATION

For the students admitted from A.Y. 2021-2022 & onwards

Semester III									
Course Code	Course	Contact Hrs/ week		SEE Duration (Hours)	Maximum Marks			Creadit(s)	
Course Coue	Course				CIA	SEE	Total	Credit(s)	
Part-I		Τ	Tu	Р					
	Advanced English Language-I	3	-	-	3	40	60	100	3
	Part-I Total	3	0	0	3	40	60	100	3
Part-II						•	•		
21UBCCC301	Core-6: Protein Biochemistry (Ad)	4	-	-	3	30	70	100	4
21UBCCC302	Core-7: Enzymology (Ad)	4	-	-	3	30	70	100	4
21UBCCC303	Core-8: Analytical Biochemistry (Ap)	4	-	-	3	30	70	100	4
21UBCDC301	DSE-1: Cluster	3	-	-	3	30	70	100	3
21UBCCC304	Core Practical- 3: Enzymology and Bioanalytical Practicals #	-	-	6	6	40	60	100	3
21UBCDC302	DSE-1 Cluster Practical:	-	-	6	3	40	60	100	2
<no course<="" td=""><td>Core</td><td>-</td><td>1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></no>	Core	-	1	-	-	-	-	-	-

Page **2** of **22**

code>	Enrichment 1:								
	Concept to								
	Practice:								
	Core								
	Enrichment 2:								
	Internship 1/	-	-	-	-	100	-	100	1
	Training/								
	Project								
	Part-II Total	15	1	12		300	400	700	21
Part-III: Abilit	y Enhancement (Cour	ses						
	FS 3:								Audit
	Placement	-	2	-	-				Audit
	Training								course
	Part-III Total	0	2	0	-	0	0	0	0
	Total (Part-I	18	3	12	-	340	460	800	24
	to Part-III)		33		-		800		24

*Out of working Hours

3 hours each on Day1 and Day 2.

**Minimum one month internship pertaining to learning for concept to practice/prototype or product development for start-up/mini and final semester project/skilling in the summer vacation/combination of semester break and summer vacation in industry/ premier research institute/NGO, etc.

DSE cluster -1 & 2:

Enclosure II

Shree Manibhai Virani and Smt.Navalben Virani Science College, Rajkot (Autonomous) Affiliated to Saurashtra University, Rajkot

B.Sc. BIOCHEMISTRY

Semester III Syllabus

For Students Admitted From A.Y.2021-2022 and Onwards

Advanced Course For the students admitted from A.Y. 2022-2023& onwards						
Offering Department: Biochemistry	Offering Department:Offered to: B.Sc. BiochemistryBiochemistry					
	Semester – III					
Course Code	Course Title (Ad.)	Course Credit and Hours				
21UBCCC301	Protein Biochemistry	4 Credits - 4 hrs/wk				

Course Description:

The course covers the physical and chemical properties of amino acids. Various elements of peptide bond, protein structure andfunctions. The course also offers to understand the applications of different techniques like centrifugation, homogenization, chromatography and electrophoresis used for protein isolation and characterization.

Course Purpose:The objective of the course is to provide comprehensive knowledge in the areasof protein chemistry,structure and function relationships, physicochemical properties of proteins and methodologies for characterization of proteinsrequired to understand regulation of cellular and molecular transformations in biological systems.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)		
CO1	Classify, compare and evaluate the structural and functional differences of amino acids and various biologically important peptides	K1, K2, K3		
CO ₂	Describe, compare and predict structural forms of proteins and illustrate peptide bond formation	K1, K2, K3, K4		
CO ₃	Identify and recognize the physiological roles of proteins. Understand, compare the roles of protease enzymes applied in protein sequencing	K1, K2, K3, K4		
CO ₄	Describe, compare and apply the knowledge of various homogenization and chromatographic techniques used in protein purification.	K1, K2, K3, K4		
CO ₅	Draw and evaluate electrophoretographs of protiens separated by different electrophoresis; explain and classify immunoglobulins.	K1, K2, K3, K4		

Course Content	Hours
	12hrs
Unit-I :Introduction to Amino acids, peptides and proteins	
• Structure and classification of amino acids.	
• Physical, chemical and optical properties of amino acids.	
Physicochemical characteristics of proteins	
• Biologically important amino acids and peptides - hormones, antibiotics and growth factors.	

Unit-II: Protein structure	12 hrs
• Nature of stabilizing bonds - covalent and non covalent.	
• The peptide bond – Formation, Bond angles and bond lengths.	
• Primary, Secondary, Tertiary and quaternary structures of protein	
• Overview of protein folding (Role of molecular chaperons)	
• Structures and functions of globular (myoglobin/ hemoglobin) and fibrous proteins(collagen/ keratin).	
Unit-III: Classification and Sequencing of Proteins	12 hrs
Nutritional Classification of protein	
• Functional classification and diverse biological functions of proteins.	
• Chemical classification: Multimeric proteins, conjugated proteins and metallo	
proteins and their properties.	
• N-terminal and C-terminal amino acid analysis.	
• Sequencing techniques – Edman's degradation, Sanger's method and Automation.	
• Generation of overlap peptides using different enzymes and chemical reagents.	
Disulfide bonds and their location.	
Unit-IV: Extraction and Separation techniques of proteins	12 r s
• Sources, availability and abundance of different proteins for isolation and	
separation from their cellular and extracellular locations.	
• Application of simple homogenization methods: Glass Teflon homogenizer,	
Grinding, Ultrasonication, French press, Osmotic lysis, and Enzymatic methods.	
• Ammonium sulphate fractionation, solvent fractionation, and dialysis.	
• Application of Ion-exchange, Molecular sieve and Affinity chromatography for protein purification.	
Unit- V: Analytical techniques and clinical aspects of proteins	12 hrs
• Applications of IEF, SDS-PAGE (Native and Reduced) and 2-D	
electrophoresis to determine purity, molecular weight and subunits of proteins.	
Molecular structure and types of immunoglobulins	
• Prions and Prion diseases.	
Haemoglobinopathies- Sickle cell anemia and Overview of types of	
Thalassemia.	

Text books :

1. Conn Erice, E. and Stumpf Paul, K. (2007). *Outlines of Biochemistry*, [5th Edition]. John Wiley & Sons, New Delhi.(Unit 1 and 2)

2. Jain, J. L. Sunjay Jain and Nitin Jain (2004). *Fundamentals of biochemistry*. S. Chand Publishing, New Delhi.(Unit 3,4 and 5)

Reference books:

1. Nelson, D. L., & Cox, M. M. (2013). *Lehninger Principles of Biochemistry*. [6th edition] Freeman and Company, New York.

2. Berg, J. M., Tymoczko, J. L., Gatto G.J. &Stryer, L., (2015) *Biochemistry*, [8th Revised edition] W H Freeman, New York.

3. Devlin, T. M. (Ed.). (2010). *Textbook of biochemistry: with clinical correlations*. 7th Edition, John Wiley & Sons, New York.

Pedagogic tools:

- Chalk and Board
- Power point presentation
- Seminar
- Videos

Methods of Assessment & Tools:

Components of CIE: 30 marks (Example as below)

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
Α	Test 1	1 st 2 units	$1^{1/2}$ hours	5 (Set for 30)	20
	Test 2	All 5 units	3 hours	15 (Set for 70)	
В	Assignment			05	10
С	Class activity			05	
Grand Total				30	
Assignment		AbstCase	ract and executive su study writing	ımmary	

	Concept mapping
	• Student generated handbook
	• Essay writing etc.
Class activity	Reaction paper
	• Quiz
	• One-minute paper
	• Situation based question
	• Application card etc.

Note: Any other assessment tools or methods can be adopted as per requirement of the course.

Advanced Course For the students admitted from A.Y. 2021-2022 & onwards					
Offering Department: Biochemistry	Offering Department: Offered to: B.Sc Biochemistry Biochemistry				
Semester – III					
Course Code	Course Title (Ad)	Course Credit and Hours			
21UBCCC302	Enzymology	4 Credits - 4 hrs/wk			

Course Description:

The course include deepening knowledge in the areas of classification of enzymes and cofactors, kinetics, inhibition and regulation of enzymes and concludes with enzyme applications in industry, therapeutics and diagnosis.

Course Purpose:

Primary goals of this course are to provide the students with detailed knowledge about enzymes, the biological catalysts with remarkable properties that sustain life, so as to develop an understanding of enzyme kinetics, mechanism of enzyme action and their regulation. The course also aims to outline the diverse applications of enzymes in disease diagnosis and therapy as well as in industry.

Acquired theoretical and experimental knowledge will enable students to find appropriate employment in different development, scientific-research laboratories, or to continue their further studies in biochemistry or related disciplines.

Course Outcomes: Upon completion of this course, the learner will be able to					
CO No.	CO Statement	Blooms taxonomy Level			

		(K1 to K6)
CO ₁	Explain relationship between the structure and function of enzymes	K1,K2
CO ₂	Interpret and explain significant mechanisms of regulation of enzymatic action	K2, K3
CO ₃	Apply appropriate methods for determination of catalytic parameters and activity of enzymes	K2, K3 and K4
CO ₄	Resolve problems considering kinetics and thermodynamics of enzymatic reactions	K2, K3 and K4
CO ₅	Analyze options for applying enzymes and their inhibitors in medicine and various industries	K2, K3 and K4

Course Content	Hours
Unit-I : Introduction to enzymes Features of enzyme catalysis	12 hrs
 Nature and properties of enzymes - protein and non-protein (ribozyme). Cofactor and prosthetic group, apoenzyme, holoenzyme. IUBMB classification of enzymes. Factors affecting the rate of chemical reactions, collision theory, activation energy and transition state theory. Fischer's lock and key hypothesis and Koshland's induced fit hypothesis. Different methods of enzyme assay. 	
Unit-II:Enzyme kinetics	12 hrs
 Relationship between initial velocity and substrate concentration, steady state kinetics, Equilibrium constant - monosubstrate reactions. Michaelis-Menten equation, Lineweaver-Burk plot, Eadie-Hofstee and Hanes plot. Determination and significance of Km , Vmax, Kcat and turnover number. Effect of pH, temperature and metal ions on the activity of enzyme. Types of bi bi reactions (sequential – ordered and random, ping pong reactions). 	
Unit-III : Role of coenzymes and Mechanism of action of enzymes	12 hrs
 Role of coenzymes in enzyme reactions:TPP, FAD, NAD, pyridoxal phosphate, biotin, coenzyme A, tetrahydrofolate, lipoic acid. Overview of mechanism of enzyme action - proximity and orientation, strain and distortion, acid base and covalent catalysis. Mechansm of Action of Ribonuclease and Lysozyme. Metal activated enzymes and metalloenzymes. Transition state analogues –types and applications. 	
Unit-IV : Enzyme inhibition and Regulation of enzyme activity	12 hrs
• Reversible (competitive, uncompetitive, non-competitive, mixed and substrate) and irreversible inhibition.	

• Control of activities of single enzymes (end product inhibition) and metabolic pathways, Feedback inhibition	
• Introduction to allosteric enzyme and its regulation- Aspartate	
Transcarbomylase.	
• Regulation by covalent modification- Glycogen Phosphorylase and	
Glycogen Synthase	
• Zymogens- Digestive enzymes, isoenzymes – LDH and Hexokinase.	
• Multienzyme complex as regulatory enzymes- Pyruvate Dehydrogenase	
complex.	
Unit- V: Applications of enzymes	12 hrs
• Clinical and diagnostics application of enzymes, enzyme applications in	
therapeutics, enzyme immunoassay (HRPO).	
• Application of enzymes in industries- Food, Dairy, Detergent, Paper,	
Textile and Leather Industry	
• Different methods of enzyme immobilization and their applications.	

Text books (2 textbooks):

- Nicholas C.Price and Lewis Stewens *Fundamentals of Enzymology* (1999) 3rd ed., Oxford University Press Inc. (New York), (Unit 4 and 5)
- Jain, J. L. Sunjay Jain and Nitin Jain (2004). *Fundamentals of biochemistry*. S. Chand Publishing, New Delhi. (Unit 1,2 and 3)

Reference books (2 or 3 reference books):

- Nelson, D.L. and Cox, M.M..Lehninger: *Principles of Biochemistry* (2013) 6th ed., W.H.Freeman and Company (New York).
- Donald, Voet. and Judith G.Voet., *Biochemistry* (2011) 4th ed., John Wiley & Sons Asia Pvt.Ltd. (New Jersey).
- Campbell, N. A., & Reece, J. B. (2016). *Campbell biology*. Boston: Pearson.

Pedagogic tools:

- Chalk and Board
- Power point presentation
- Seminar
- Videos

Methods of Assessment& Tools:

Components of CIE: 40 marks (Example as below)

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
A	Test 1	1 st 2 units	$1^{1/2}$ hours	5 (Set for 30)	20

	Test 2	All 5 units	3 hours	15 (Set for 70)	
В	Assignment			5	10
С	Class activity			5	
				Grand Total	30
Assignn	gnment• Abstract and executive summary• Case study writing• Concept mapping• Student generated handbook• Essay writing etc.				
Class ac	Class activity Reaction paper Quiz One-minute paper Situation based question Application card etc. 				

Note : Any other assessment tools or methods can be adopted as per requirement of the course.

Applied Course For the students admitted from A.Y. 2021-2022 & onwards			
Offering Department:Offered to: B.Sc Biochemistry studentsBiochemistry			
Semester – III			
Course Code	Course Title (F)	Credits	
21UBCCC303	Core 7: Analytical Biochemistry	4 Credits- 4 hrs/wk	

Course Description: Analytical biochemistry is a course that is essential for multiple disciplines of biological sciences besides biochemistry; such as plant and animal sciences, medicine, pharmacy and pharmacology, microbiology as well as biotechnology. It deals with various analytical techniques highly useful in better understanding of biomolecules and applying the bioanalytical instruments for analysis of wide range of biochemical substances.

Course Purpose:

The course aims to make students relate and apply basic concepts of biophysics and various analytical techniques such as UV-Visible spectroscopy, Centrifugation techniques, chromatography and electrophoresis in evaluation of wide range of substances encountered in biochemistry. It also expected to help analyze higher order structures of proteins, DNA and other macromolecules and compare them with their functions.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K2 to K6)		
CO ₁	Apply the basic concepts of various analytical techniques to distinguish, characterize and analyze different biomolecules.	K ₂ , K ₃ , K ₄		
CO ₂	Relate working principle, instrumentation and applications of various bio-analytical instruments.	K ₂ , K ₃ , K ₄		
CO ₃	Illustrate and apply the principles and functioning of various analytical instruments to elucidate interpret and analyze properties of different Biomolecules (proteins and nucleic acids) such as their structures, molecular weight, solubility, etc.	K ₂ , K ₃ , K ₄ , K ₅ , K ₆		
CO ₄	Apply various analytical techniques in identification and characterization of wide range of known as well as unknown chemical and biological substances and relate their functions with their properties.	K ₂ , K ₃ , K ₄ , K ₅ , K ₆		
CO ₅	Design methodologies and plan experiments to analyze, separate or purify wide range of molecules from biological samples on the basis of differences in their physicochemical properties.	K ₂ , K ₃ , K ₄ , K ₅ , K ₆		

Course Content	Hours
	12 hrs
Unit 1: Spectroscopic Techniques	

	4 4 9	
• Descriptions of different terminologies; light, cold	our, wavelength, frequency	
energies of photons etc. Wavelength ranges of dif	ferent electromagnetic	
radiations and their important characteristics.		
• UV-Visible absorption spectra, identification of un	nknown substances based on	
absorption spectra and absorption maxima. How d	o absorption spectra arise?	
Chromospheres and Chromophoric groups.		
• Quantitative aspects of light absorption; Beer-Lan	berts laws of light absorption	
with their limitations. Extinction coefficients- (mo	lar and percent extinction	
coefficients).		
• Instrumentation, principles, components and work	ing of single and double	
beam colorimeter and spectrophotometers.		
• Advantages of double beam instruments over sing	le beam instruments. Basic	
and advanced applications of UV-Visible spectros	copy in biochemistry.	
Heit 2. Contaile and an Tachainnea		12 h
Unit 2: Centrifugation Techniques		12 nrs
• Sedimentation Principle - the concepts of Centrifu centrifugal force (RCF). Relationship between F a	gal force (F) and Relative nd RCF.	
• Over view of different types of rotors (swing out t	ype rotors, angle head rotors,	
vertical rotors etc) and centrifuges (clinical centrif	uges, high speed centrifuges	
and ultra centrifuges).		
• Preparative and analytical centrifugation – principl	es, instrumentation,	
techniques, and their applications.		
• Overview of different homogenization methods. I	Differential centrifugation and	
its applications in isolation of cell organelles. Sigr	nificance of use of low	
temperatures and isotonic medium in differential of	centrifugation.	
• Principle of density gradient centrifugation, mater	ials used to prepare density	
gradients and various applications of density grad	ient centrifugation.	
Unit 3: Radioisotope techniques		12 hrs
• Radioactive decay by emission of alpha, beta and	gamma radiations with	
suitable examples.		
• Half life of radio isotopes. Types of radioisotopes	commonly used in	
biochemistry, units of radioactivity.	5	
• Techniques for measurement of radioactivity (gas	ionization and liquid	
scintillation counting). Overview of GM counter,	Liquid Scintillation counter	
and gamma counters.	1	
• Applications of radioisotopes.		
Biological hazards of radiation and safety measure	es in handling radioisotopes.	
	C 1	
Unit 4: Chromatographic techniques		12 hrs
General principles, materials, methods and applications o	f the following techniques:	
• Paper and thin-layer chromatography techniques.		
 Ion exchange chromatography. 		
 Molecular sieve chromatography. 		
Affinity chromatography		
• Gas-Liquid chromatography (GLC)		
• High performance liquid chromatography (HPLC))	

Unit 5: Electrophoresis	12 hrs
 Basic principles of electrophoresis and factors affecting electrophoretic mobility: sample itself, electrical field strength, buffer, and supporting medium. Principle, materials, apparatus used and applications of Agarose and Polyacrylamide gel electrophoresis (PAGE). Overview of various applications of gel electrophoresis in molecular biology. Principle and applications of SDS PAGE, Native v/s SDS PAGE. Using these techniques in determination of protein structure. Basic principle and applications of Isoelectric focusing and 2D Gel electrophoresis. 	

Text books (2 textbooks):

1. Upadhyay, A., Upadhyay, K., & Nath, N. (2009). Biophysical chemistry (principles and

techniques). Mumbai: Himalaya Pub. House.

2. Wilson K. and Walker J. (2018). *Principles and Techniques of Biochemistry and Molecular Biology*. Cambridge University Press - ISBN: 9781316677056

Reference books:

1. Conn Erice, E. and Stumpf Paul, K. (2007).Outlines of Biochemistry, [5th Edition]. John Wiley & Sons, New Delhi.

2. Freifelder, D. (1986). Physical biochemistry: Applications to biochemistry and molecular biology. San Francisco: W.H. Freeman.

3. Van Holde, K. E., Johnson, W. C., & Ho, P. S. (2006). Principles of physical biochemistry. Prentice-Hall.

Pedagogic tools:

- Chalk and Board
- Power point presentation
- Seminar
- Videos

Methods of Assessment & Tools:

Components of CIE:30 marks (Example as below)

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
Α	Test 1	1 st 2 units	$1^{1/2}$ hours	5 (Set for 30)	20
	Test 2	All 5 units	3 hours	15 (Set for 70)	
В	Assignment			05	10
С	Class activity			05	
Grand Total			30		
Assignment • Abstract and executive summary • Case study writing • Concept mapping • Student generated handbook • Essay writing etc					
Class activity• Reaction paper• Quiz• One-minute paper• Situation based question• Application card etc					

Note : Any other assessment tools or methods can be adopted as per requirement of the course.

Advanced Course For the students admitted from A.Y. 2021-2022 & onwards				
Offering Department:	Offered to: B.Sc Biochemistry			
Biochemistry	Biochemistry			
Semester – III				
Course Code	Course Title (Ad)	Course Credit and Hours		
21UBCC304	Enzymology and Bioanalytical	3 Credits - 6 hrs/wk		
	Practicals			

Course Description:

This laboratory course compliments the theory core courses by providing students with hands on experiences on Enzyme assay and Kinetics . Course also includes various analytical techniques such as UV-Visible spectroscopy, centrifugation techniques, chromatography and electrophoretic techniques.

Course Purpose:

To integrate the practical aspects of enzymology to provide an overview of the effects of various

factors affecting enzyme activity, and applications of various bioanalytical techniques to purify and evaluate protein structure and functions through which students can confidently and competently work in both academia and industry.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (S1 to S6)		
CO ₁	Describe, apply and execute the enzyme assay from homogenate	S1, S2, S3, S4		
CO ₂	Compare and identify the differences in electrophoretic patterns of various proteins	S2, S4		
CO ₃	Perform bioassay for protein estimations and calculate the concentration of unknown biological samples	S2, S3		
CO ₄	Illustrate and draw the graphs to evaluate the effects of various factors like pH, temperature and substrate concentration on enzyme activity	S1, S2, S3, S4		
CO ₅	Identify and characterize the amino acids from the mixture by applying TLC and paper chromatography technique	S1, S3		

Suggested laboratory experiments:

- 1. Qualitative analysis of proteins
- 2. Estimation of proteins by Lowry method.
- 3. Isolation of casein from milk.
- 4. Isoelectric pH of casein.
- 5. Molecular weight and subunit determination of proteins by native PAGE and SDS-PAGE. (Dry lab)
- 6. An introduction to practicals in enzymology.
- 7. Assay of enzyme Acid Phosphatase.
- 8. Enzyme curve of Acid Phosphatase.
- 9. Substrate curve of Acid Phosphatase.
- 10. pH curve of Acid Phosphatase
- 11. Temperature Curve of Acid Phosphatase.
- 12. Determination of Specific activity of enzyme.

- 13. Determination of absorption spectrum and absorption maxima of given compound.
- 14. Verification of Beer's Law of light absorption using colored solutions.
- 15. Introduction to principle and working of centrifuge.
- 16. Separation of amino acids using paper chromatography. Determination of Rf values and identification of amino acids from mixtures.
- 17. Separation of lipids by thin layer chromatography.
- 18. Separation of compounds using column chromatography.
- 19. Separation of Dyes using chalk chromatography.
- 20. Agarose Gel electrophoresis of DNA.

Pedagogic tools:

- Chalk and Board
- Laboratory Hands on training
- PowerPoint Presentation and Videos.
- Virtual Lab

Text books – Not applicable

Reference Books:

- Sadasivam, S. and Manickam, A. 2010. *Biochemical Methods*. [Third Edition]. New Age International (P) Ltd., New Delhi.
- Jayaraman, J. 2008. *Laboratory Manual in Biochemistry*. [First Edition Reprint]. New Age International (P) Ltd., New Delhi

Laboratory Manual/ Book

 Manual of Biochemistry Department, Shri M. & N. Virani Science College (Autonomous), Rajkot

Suggested reading / E-resources

• Not Applicable

Suggested MOOCs

• Not Applicable

Methods of assessing the Course Outcomes

The COs of the course will be assessed through

• CIA (Test, Performance, Record book, Viva Voce)

• SEE

CIA Components	Marks
Test (After completion of 70-80% of accessible Practicals)	30
Performance and Record book	10
Grand Total	40

Sr.	SEE	Content	Duration	Marks	Sub
No.	Component		(if any)		Total
Α	Test	After completion of course	6 hours	60	60
Grand Total				60	

SHREE MANIBHAI AND SMT NAVALBEN VIRANI SCIENCE COLLEGE, AUTONOMOUS

AFFILIATED TO SAURASHTRA UNIVERSITY, RAJKOT

Department of Biochemistry

Part III				
Skill Enhancement Course (SEC) – II – Co-Curricular Courses (CoC) For the students admitted from A.Y. 2021-2022 & onwards				
Offered by: Department of Biochemistry	Offered to: (Please mark $$ as applicable) \checkmark Students across the University other than the offering department.			
	Students across the University including the offering department. (The course should not be a part of regular curriculum of the offering department.)			
Semester : III – IV (3 year programs)				
Course Code	Course Title	Course Credit and Hours		
21AEC07	Medical Laboratory Techniques (MLT)	2 Credit - 4 hrs / wk		

Objective of the course:

- 1. Become proficient in the collection of blood samples
- 2. Know the exciting and rewarding world of the medical laboratory.
- 3. Use laboratory equipments and get fluency in medical terminology
- **4.** Have opportunities for full- and part-time employment in both clinics and hospital laboratories
- 5. Get career opportunities in government, research and veterinary laboratories.

Target Skills (Course outcomes) :

1. Skill development to medical laboratory techniques

2. Skill development to interpret the results

Justification and references for the course (Mapping with NSDC/NSQF/Sector Skill Council/Regional needs/any other) :

- The Co curricular course based on Health Care Sector Skill Council
- Course is at NSQF Level 4 and 5

Reference:

Link from https://nqr.gov.in/sites/default/files/NSQF-%20Medical%20Laboratory%20Technician_0.pdf

Course Description:

• A course in Medical Laboratory Technology is career-oriented and highly demanding in the paramedical science realm. The course involves teaching students how to handle equipment, conduct tests, collect information, make reports, and document these reports. Coursework, therefore, involves plenty of practical, hands-on training and enough experience.

Course Content		Hours
Module-I: Hematology		8 hrs
•	Intracellular, extracellular and interstitial fluid.	
•	Introduction to blood	
•	Phlebotomy	
•	Hb –types and functions	
•	Synthesis of Hb	
•	Fate of Hb and its clinical significance	
•	Blood grouping	
•	Rh incompatibility	
Modu	le-II : Different types of Blood cells	12 hrs
•	Different types of Blood cells	
•	Structure and function of RBC	
•	Process of erythropoesis	
•	Anemia and Thalasemia	
•	Classification and Functions of WBCs	
•	Clinical and pathological significance of WBC	
•	Differential count of WBC	
•	Platelet structure and functions	
•	Coagulation cascade	
•	Bleeding disorder	
•	Disorders of RBC and its counting	
Modu	Module-III : Clinical Biochemistry Instrumentation and Lipid profile	
•	Importance of clinical biochemistry	
•	Various types of Analyzer	
•	Importance of analyzer	
•	Different types of analyzer used in labs	
•	Various modes to operate the analyzer	
•	Building blocks of lipids - fatty acids and glycerol	
•	Lipoproteins and their clinical significance	
•	Atherosclerosis, Hyperlipidemia and Hypertriglycerdemia	
•	Lipid Profile Tests and Its Importance	

Module-IV : Cardiac and Liver Function Tests		
 Basic anatomy of heart and blood vessels. 		
Cardiac disorders: Myocardial Infarction, Hypertension,		
Cardiac disorders: Congestive heart disease.		
Prevention of Cardiac disorders		
 Importance of Cardiac function test: CK-MB and SGOT 		
Types and Clinical Significance of Bilirubin		
Liver disorders: fatty liver and Jaundice		
Types of Jaundice		
Prevention of Liver disorders		
Module-V : Renal Function Tests & Diabetes Mellitus		
Basic anatomy & Physiology of Kidney		
Kidney disorders and dialysis.		
Prevention of Kidney diseases		
Renal Function Tests and its Clinical Significance		
Physical and chemical Examination of Urine		
Microscopic Examination of Urine		
Clinical Significance of blood sugar level		
Types of Diabetes		
Preventive actions for diabetes		

Suggested laboratory experiments / other activities:

- 1. Introduction to Hematology
- 2. Phlebotomy
- 3. Blood grouping
- 4. Hemoglobin Estimation
- 5. Measurement of blood pressure
- 6. Introduction to Neubaur Chamber
- 7. Total Count of RBC
- 8. Total Count of WBC
- 9. Introduction to differential WBC count
- 10. Bleeding Time and Clotting Time
- 11. Packed cell volume
- 12. Principle & Working of Semi Auto Analyzer
- 13. Estimation of Blood glucose
- 14. Estimation of bilirubin
- 15. Estimation of SGPT
- 16. Estimation of cholesterol
- 17. Estimation of Triglyceride
- 18. Estimation of CK-MB
- 19. Estimation of urea
- 20. Estimation of uric acid
- 21. Physical and chemical analysis of urine

Pedagogic tools:

1. Chalk and Talk

- PPT and Videos.
- Hands-on activities
- Assignment
- Group discussion

Reference Books:

1. Waugh, A., & Grant, A. (2014). Ross & Wilson anatomy and physiology in health and illness. Elsevier Health Sciences.

2. Sembulingam, K., & Sembulingam, P. (2012). Essentials of medical physiology. JP Medical Ltd.

Suggested reading / E-resources

Godkar, P. B., & Godkar, D. P. (2006). Textbook of medical laboratory technology. Bhalani publishing house.

Suggested MOOCs:

https://onlinecourses.nptel.ac.in/noc21_hs62/preview

Methods of Assessment & Tools:

(Though the credit has to be awarded at the end of the course i.e. two semesters, it is recommended to consolidated assessment in two stages one at end of each semester. Components used for assessment can be different as per the nature of the course)

S.N.	Component	Content	Duration	Sub Total	Marks
1	Attendance			10	10
2	Assignments			20	10
3	Practical Skill Assessment (Assessment at the end of semester -III)	Practical No.1 to 11	One Hour	20	20
4	Practical Skill Assessment (Assessment at the end of semester IV)	Practical No.1 to 21	Two Hours	40	20 (Set for 40)
5	Course Mid Examination	Unit 1 & 2	One Hour	20	20
6	Course End Examination	5 Units	Two Hours	40	20 (Set for 40)
			Total	100	100