Shri Manibhai Virani and Smt. Navalben Virani Science College

(Autonomous), Rajkot

Affiliated to Saurashtra University, Rajkot

11th Academic Council held on 20th June, 2023

APPENDIX J.1

Enclosures I to V of 13th BoS – Microbiology held on 22nd May, 2023

SarvodayaKelavaniSamaj Managed Shri ManibhaiVirani&Smt.NavalbenViraniScienceCollege, Rajkot (Autonomous) Affiliated to SaurashtraUniversity, Rajkot

Reaccredited at the "A" Level (CGPA 3.28) by NAAC "STAR" College Scheme & Status by MST-DBT A College with Potential for Excellence – CPE (Phase - II) by UGC Accredited at the G-AAA Highest Grade 'A-1' Level by KCG, Govt. of Gujarat UGC-DDU KAUSHAL Kendra GPCB-Government of Gujarat approved Environmental Audit Centre

SCHEME OF LEARNING AND EVALUATION

Of

B. Sc. MICROBIOLOGY

(W.e.f June 2021)

Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous) Affiliated to Saurashtra University, Rajkot Department of Microbiology B.Sc. MICROBIOLOGY PROGRAMME Regulations for Students Admitted from A.Y. 2021-2022& Onwards

ELIGIBILITY

Candidate who has passed Higher Secondary Certificate (10+2) examination with Science subjects in respective streams of Gujarat State or any other examination recognized as equivalent thereto with a good academic record, shall be eligible for admission, subject to such other conditions prescribed by the Parent University and State Government from time to time. All admissions are provisional and subject to the approval of Parent University.

LATERAL ENTRY

Candidates seeking admission directly in third semester of B.Sc. Microbiology must have passed examination of Diploma in Pharmacy or relevant subjects will be eligible for admission. A result of this type of candidate will be declared by considering his/her marks of semester 3 to 6 in aggregate and accordingly class will be awarded.

DURATION OF THE PROGRAMME

The Program

1. Shall extend over a period of three years comprising of six semesters for lateral entrants

2. Comprises of two semesters in one academic year wherein each semester normally willbe of minimum 90 teaching days.

CHOICE BASED CREDIT SYSTEM (CBCS)

The CBCS provides an opportunity for the students to choose courses from the prescribed courses based on their interest. Mainly, each course is worth a certain number of credit points, determined by different criteria including learning outcome, contact hours etc.

The following mechanism is adopted for the purpose of computation of credits earned by the students:

a)	1-hour instruction of Theory	= 1 Credit
b)	2-3 hours instruction of Tutorial	= 1 Credit
c)	2-3 hours instructions of Practical	= 1 Credit

OUTCOME BASED EDUCATION (OBE)

Outcome based education is based on revised Bloom Taxonomy and is a learner-centric teaching and learning methodology in which the course delivery and assessment are planned to achieve stated objectives and outcomes. It focuses on measuring students performance i.e. outcomes at different levels. OBE method of learning is adopted.

STRUCTURE OF THE PROGRAMME

UG program shall have a curriculum comprising theory and practical (separate / in built with theory) courses with a specified syllabus. The curriculum of the program is a blend of Language Courses, Core Courses, Interdisciplinary Courses (IDC), Discipline Specific Electives (DSE), Trans-disciplinary Electives (TDE) and Ability Enhancement Courses (AEC) shall be offered.

MEDIUM OF INSTRUCTION AND EXAMINATIONS

The medium of instruction and examinations shall be English, except for courses on Languages other than English.

EVALUATION

The evaluation shall generally comprise of Continuous Internal Assessment (CIA) and Semester End Examination (SEE) with percentage weightage as specified below, unless specified otherwise in the Scheme of Learning and Evaluation.

Components	Theory Courses	Practical Courses		
Continuous Internal	Varies from 30 percent to 60	Varies from 40 percent to 100		
Assessment (CIA)	percent based on the nature of	percent based on the nature of		
Assessment (CIA)	course.	course.		
Somester End Examination	Varies from 70 percent to 40	Varies from 40 percent to 60		
	percent based on the nature of	percent based on the nature of		
(SEE)	course.	course.		

COMPLETION OF PROGRAM TO EARN THE DEGREE CERTIFICATE

The University shall publish the result after evaluation and with the recommendations of Result Passing Board at the end of each semester. On approval / ratification of the results by the Academic Council, the student will be recommended to Governing Body for the award of the degree provided that the student have earned all the credits towards mandatory course / components as mentioned in Scheme of Learning and Evaluation.

MINIMUM QUALIFICATION FOR APPOINTMENT OF FACULTY MEMBER

As per norms of UGC and./or other related Regulatory body

Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous) Affiliated to Saurashtra University, Rajkot

Department of Microbiology B. Sc. MICROBIOLOGY

VISION OF THE DEPARTMENT

Our vision is to produce highly qualified and competent microbiologists with expertise in all the relevant areas, to develop and maintain a strong and supportive research programme to complement our national needs while strengthening local relevance and to rise as centre of excellence and knowledge in the subject of Microbiology

MISSION OF THE DEPARTMENT

The Mission of Microbiology Department is to promote good quality education, research and to provide the most rigorous and inspiring training in the discipline of Microbiology with greater significance of application in all relevant areas. The Department strives to educate and mentor students to:

- Acquire practical skills necessary for operation and maintenance of small and medium scale industry and research institute,
- Be aware of the role of microorganisms in various aspects of life processes and understand their importance in agriculture, environment, food, health, and other areas,
- Apply microbiological techniques and technologies to the betterment of human life, environment and national economy,
- Contribute to the pursuit of knowledge by contributing meaningfully in the area of Research in Microbiology

OBJECTIVES OF THE PROGRAMME

The Curriculum is designed to attain the following learning goals which students shall accomplish by the time of their graduation:

- 1. This programme will enable students to understand the basic anatomy, physiology, diversity, and genetics of microorganisms including viruses, bacteria, protozoa, algae and fungi, and exploit their interactions with environment and human beings.
- 2. The Curriculum is designed to impart to students the skill to operate basic and advanced instruments used for analysis of various biomolecules.
- 3. This programme will enable students to acquire knowledge on the Microbiology, Cell Biology, Microbiology, Immunology, Bioprocess Technology and Molecular Biology to enable them to understand emerging and advanced concept in modern biology and help them to take their career in this field.
- 4. After completion of the programme, the students will be able to acquire the necessary theoretical and practical competencies in Microbiology to enable them to undertake higher studies in recognized Institutions of advance learning and engage gainful self-employment.
- 5. The Programme is intended to help the students to be the innovative and versatile personalities in the field of Life Science with quality education and provide the skilled manpower required by Research and Development, Institutions of Higher Learning and Industry.

GRADUATE ATTRIBUTES

- Academic excellence: Ability to identify key questions, research and pursue rigorous evidencebased arguments.
- **Critical Thinking and Effective communications**: Analysis and evaluation of information to form a judgment about a subject or idea and ability to effectively communicate the same in a structured form.
- **Global Citizenship**: Mutual understanding with others from diverse cultures, perspectives and backgrounds
- Life Long Learning: Open, curious, willing to investigate, and consider new knowledge and ways of thinking

PROGRAM EDUCATIONS OBJECTIVES (PEOs)

This programme will produce Graduates who will attain following PEOs after few years of graduation Core competency: will develop the competency to pursue higher education, successful **PEO 1** : professional career, or be an entrepreneur with synergistic combination of the knowledge and skills of Microbiology and allied sciences Breadth of knowledge: will show the ability to critically analyse scientific data, : drawing objective conclusions from it and apply this knowledge to independently **PEO 2** design, and execute small research problems with the help of integrated knowledge of Microbiology and other domains for societal and human welfare. Preparedness: will have the potential to take any task or assignment in the capacity of : a leader or team member in the chosen occupations or careers and will reflect an PEO 3 aptitude and ability for contribution in academics, entrepreneurship, and research, equipped with good communication skills. Professionalism: will possess strong professional ethics and expertise to fulfil moral **PEO 4** duties towards their profession, community, society and nation at large. Learning environment: will show readiness for lifelong learning necessary to meet : **PEO 5** the ever evolving professional, social and personal demands through ethical, interpersonal and team skills.

PROGRAM OUTCOMES:

After co	ompl	etion of the B.Sc. Microbiology programme, the Graduate will be able to:
PO 1	:	Domain knowledge: Demonstrate an understanding of fundamental principles of Microbiology, its applications and scope, along with an ability to identify beneficial and harmful role of microorganisms for the benefit of Science and Society
PO 2	:	Problem analysis: Accurately identify and critically analyse pertinent problems in the field of Applied Microbiology and various domains of Biological sciences.
PO 3	:	Design/development of solutions: Search for and successfully arrive at viable conclusions/solutions pertaining to various aspects of life sciencesusing right approach and appropriate tools and techniques
PO 4	:	Conduct investigations of complex problems: Ability to investigate any complex problems related to Microbiology and other life science with the use of appropriate experimentaltools/techniques/equipment.
PO 5	:	Modern tool usage: Understand standard operating procedures, safety measures and acquire in-depth technical competence to handle the basic laboratory instruments, and develop the skills to locate and retrieve scientific information with modern data search tools.
PO 6	:	The Microbiologist and Society: Demonstrate the ability to understand the role of scientific developments in a changing world from the disciplinary perspective as well as in relation to its professional and everyday use, withan insight into one's role in society and act in an honest and consistent manner based on a strong sense of self and personal values.
PO 7	:	Environment and sustainability: Analyse the impact of scientific and technological advances on the environment and society and the need for sustainable development.
PO 8	:	Ethics: Commitment to professional ethics and responsibilities.
PO 9	:	Individual and team work: Exhibit the potential to effectively accomplish tasks as a leader or a member of a team as well as independently in multidisciplinary settings.
PO 10	:	Communication: Communicate effectively in spoken and written forms as well as through digital media with scientific community, society, and fellow mates.
PO 11	:	Project management and finance: Demonstrate knowledge and scientific understanding to design a research project and manage its execution to generate new scientific insights, innovations in Microbiology research and exhibit organizational skills for able management of time and resources.
PO 12	:	Life-long learning: Able to recognize the need to undertake life-long learning and acquire the capacity to build on critical thinking skills for periodic updating of scientific knowledge and its application.

PROGRAM SPECIFIC OUTCOMES (PSOs) for B. Sc. Microbiology programme

After c	om	pletion of the programme, the Graduate will:
PSO1		Acquire knowledge on the fundamentals of Microbiology for sound and solid base which
1501	•	enables them to understand the emerging and advanced concepts in life sciences
		To equip the students with knowledge, skill and inspiration to pursue higher education and
PSO2	:	research in Microbiology and allied fields in reputed institutes at national and international
		level.
DCO2		Be able to understand fundamental principles of Microbiology to find innovative solutions
P505	:	for environment, agriculture, and health related issues at local and global level.
		Apply the knowledge of Microbiology, preferably with the synergistic application of basic
PSO4	:	understanding of other allied fields, for finding sustainable ethical solutions to existing
		global problems in compliance to the SDGs
		Become competent and eligible to appear in various competitive exams, getting placement
PSO5	:	in government and private sectors of academia, research and industries, and become a
		successful Microbiologist serving the Nation.

Shree Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous) Affiliated to Saurashtra University, Rajkot Department of Microbiology B. Sc. MICROBIOLOGY SCHEME OF LEARNING AND EVALUATION For the students admitted from the A.Y. 2021-22 & onwards

			Seme	ester-	-I				
	(Contac	t	SEE	Ma				
Course	Course	H	Irs/wk	ζ.	Duration	CIA	SEE	Total	Credits
Code		Т	Tu	Р	hrs				
Part–I									
21ULCEN101	English-I –								
	Development of	3	-	-	3	40	60	100	3
	Functional English								
	Part-I Total	3	0	0		40	60	100	3
Part–II				-					
21UMBCC101	Core1:								
	Fundamentals of								
	Microbiology (F1)	4	-	-	3	30	70	100	4
21UMBCC102	Core2:Microbial								
	Growth and Control	4	_	_	3	30	70	100	4
	(F2)	Т							
21UMBID101	IDC-1: Zoology-1	•		_		•	-	100	•
	Systematics and	3	-		3	30	70	100	3
	Anatomy								
21UMBCC103	Core Practical-I			(40	(0)	100	4
	Basic Microbial	-	-	0	6#	40	60	100	4
	IDC Practical 1:								
	TDC-TTacucat-1. Zoology_1.			6	2	40	60	100	2
	Systematics and	-	-	0	3	40	00	100	Z
	Anatomy								
	Core Enrichment –				_		Evalu	ation at t	he end of
	1: Concept to		1	-		(20)	S	Semester	- IV
	Practice Course								
	Part-II Total	11	1	12		170	330	500	17
Part-III: Abili	ty Enhancement Cou	irses				1		1	
21AESD101	AECC I :							D 1	A 1°.
	Introduction to SDG	-	-	-	-		-	Remark	Audit
	(online course)							S	course
	AECC II:								
	Environmental					Evolu	ation of	the and	
	Conservation and	1	-	-	-		ation at	une end	-
	Sustainable					012	2 Sem	CSICI	
	Development								

AECC III: Human Values for Holistic Living	1	2*	-	-	Evalua of 2	-		
FS 3: Career Acceleration Programme	2*							
Part-III Total	2	-	-		100	0	0	0
Total (Part-I to Part-III)	16	1	12	-	210	390	600	20
	29				600			

3hrs on day1 and 3 hrson day 2;

* Beyond Academic hours

() Final evaluation for 100 marks be made at the end of Semester IV, which include 20 marks CIA in Semesters I, II, and III each, and of 40 marks in Semester IV.

			Sem	ester	-II				
		Contac	t Hrs/	wk.	SEF	E Ma	aximu	n Marks	
CourseC	cod Course				Durat	ion CIA	SE	Total	Credits
e		Т	Tu	Р	_ nrs		E		
Part –I									
	English II –								
21ULCEN2	2 Functional English	3	-	-	3	40	60	100	3
	Part-I Total	3	0	0		40	60	100	3
Part-II									
21UMBCC2	Core3: Microbial Taxonomy and diversity (F)	4	-	-	3	30	70	100	4
21UMBCC2	02 Core4: Basic Biochemistry (F)	4	-	-	3	30	70	100	4
21UMBCC2	Core 5: Cell Structure and Organization (F)	4	-	-	3	30	70	100	4
21UMBID2	IDC-2: Botany – Medicinal Botany	3	-		3	30	70	100	3
21UMBCC204 Microbial Diversity and		-	-	6	6#	40	60	100	2
21UMBID2	1DC-2: Practical: Botany	-	-	6	3	40	60	100	2
	Core Enrichment – 2: Concept to Practice Course		1		-	(20) Evaluation at Semester		uation at Semester	the end of - IV
	Part-II Total	15	1	12		200	400	600	19
Part-III:	Ability Enhancement	Courses	1	T					
21xxx	AECC II: Environmental Conservation and Sustainable Development	1	-	-	-	Remarks		2	
21xxxx	AECC III: Human Values for Holistic Living	1	2*	-	-	Remarks		5	3
	FS 3: Career Acceleration Programme								
	Part-III Total	2	-	-		0	0	0	5
	Total (Part-I to Part-III)	20	1	12	-	240	460	700	27
			33			700			

- # 3hrs on day1 and 3 hrs on day 2;
- * Beyond Academic hours
- (Final evaluation for 100 marks be made at the end of Semester IV, which include 20 marks CIA in Semesters I, II, and III each, and of 40 marks in Semester IV.)

Minimum one-month internship pertaining to learning for concept to practice/prototype or product development for start-up/mini and final semester project/skilling in the summer vacation/combination of semester break and summer vacation in industry/premier research institute/NGO, etc.

Semester-III												
	~	С	onta	nct	SEE		Maxin Mar	num ks	~			
CourseCode	Course Course		Hrs/wk. T Tu P		Durati on hrs	CIA	SEE	Total	Creans			
Part – I			I	I		<u> </u>	I					
21ULCEN3	English III – Advanced English and Correspondence	3	-	-	3	40	60	100	3			
	Part-I Total	3	0	0		40	60	100	3			
Part–II												
21UMBCC301	Core6 : Applied and Environmental Microbiology	4	-	-	3	30	70	100	4			
21UMBCC302	Core7 : Agricultural Microbiology	4	-		3	30	70	100	4			
21UMBCC303	Core8 : Bioinstrumentation Techniques	4	-		3	30	70	100	4			
21UMBDC301	DSE 1: Sustainability and Conservation (Zoology-2)	3	-	-	3	30	70	100	3			
21UMBCC304	Core practical – 3 – Applied and Analytical Microbiology	-	-	6	6	40	60	100	2			
21UMBDC302	DSE 1: Practical Sustainability and Conservation (Zoology-2)	-	-	6	3	40	60	100	2			
<no course<br="">code></no>	Core Enrichment – 1: Concept to Practice Course		1	-	-	20	Evalu	ation at Semester	the end of - IV			
	Core Enrichment 2: Internship 1	-	-	-		100		100	1			
	Part-II Total	15	1	12		300	400	700	20			
Part-III: Ability	Enhancement Courses											
	FS 3:Career Acceleration Programme (CAP)	-	2	-					Audit course			
	Part-III Total	-	2	-		0	0	0				
	Total (Part-I to Part-III)	18	3	12	-	340	460	800	23			
		33			33				800			

Semester– IV												
		С	onta	ct	SEEDu	Ma	aximun	n Marks				
CourseCode	Course	Н	rs/w	k.	ration	CIA	SEE	Total	Credits			
CourseCoue	Course	Т	T u	Р	1115				Creans			
Part – I	L	L	1	1		1						
21ULCEN4	English IV –	3	-	-	3	40	60	100	3			
	Part-I Total	3	0	0		40	60	100	3			
Part–II												
21UMBCC401	Core 9 : (Ad) Bacterial Metabolism	4	-	-	3	30	70	100	4			
21UMBCC402	Core10 :(Ap) Industrial Microbiology	4	-		3	30	70	100	4			
21UMBCE401/ 21UMBCE402	Core Elective:1 Quality Assurance and Quality Control / Mycology and Virology	4	-		3	30	70	100	4			
	TDE 1:	2	-	-	3	Total Ir	nternal E	valuation	2			
						30	70	100				
	DSE:	3	-	-	3	30	70	100	3			
21UMBCC403	Core Practical – 4 – Fermentation Microbiology			6	6	40	60	100	3			
21UMBCE403/ 21UMBCE404	Core Elective Practical: Quality Assurance and Quality control / Mycology and Virology			4	3	40	60	100	2			
	DSE:Practical:			6	3	40	60	100	2			
	Core Enrichment – 1: Concept to Practice Course		1	-	-	40	-	100	-			
	Core Enrichment 2: Internship 2	-	-	-		100		100	1			
	Part-II Total	17	1	18		270	530	800	24			
Part-III:AbilityE	nhancementCourses											
<no code="" subject=""></no>	FS 3: Career Acceleration Programme (CAP)	-	2	-					Audit course			
	Part-III Total	0	2	0								
	Total (Part-I to Part-III)	20	3	18	-	310	590	900	27			
			37			900						

Minimum one-month internship pertaining to learning for concept to practice/prototype or product development for start-up/mini and final semester project/skilling in the summer vacation/combination of semester break and summer vacation in industry/premier research institute/NGO etc.

Trans-Disciplinary Elective & Discipline Specific Elective offered by Department to the Cluster for SEM-4 Students

Course	Туре	Course Code	Course title	Credit
Trans-Discip	linary	21UMBTD401	Microbes in Human Welfare	2
Elective				
Discipline	Specific	21UMBDE405/406	Pharmaceutical Microbiology -	3/2
Elective	-		Theory/Practical	

Semester– V												
		С	onta	ct	SEE	Ma	ximum	Marks				
Course Code	Course	H T	Hrs/wk.TTuP		Durat ion hrs	CIA	SEE	Total	Credits			
Part–II			1									
21UMBCC501	Core11: (Adv.) Immunology	4	-	-	3	30	70	100	4			
21UMBCC502	Core12: (Adv/App) Molecular Biology and Genetic Engineering	4	-	-	3	30	70	100	4			
21UMBCC503	Core 13: (Self-study) – (F/Ap)– Phycology	1	-	-	3	30	70	100	4			
21UMBCC504	Core14 : Concept Recapitulation Test (CRT) for Core Courses of Semester Ito V – (F)	-	_	-	2	50	-	50	1			
21UMBCE501/ 21UMBCE 502/ 21UMBCE 503	Core Elective 2: Fundamentals of Research Methodology/ Microbiology & Health care /Pharmaceutical Microbiology	4	-		3	30	70	100	4			
	TDE 2:	2	-	-	3	100		100	2			
21UMBCC505	Core Practical – 5 – Clinical and Molecular Microbiology	-	-	9	6	40	60	100	3			
21UMBCE504/ 21UMBCE 505/ 21UMBCE 503	Core ElectivePractical- 5 Fundamentals of Research Methodology/ Microbiology & Health care / Pharmaceutical Microbiology	-	-	4	3	20	30	50	2			
	Core Enrichment 3: * Internship/Training	-	-	-		100	-	100	1			
	Core Enrichment 4: Minor Project /Dissertation/Review Article/ Instrumental Training/ Industrial Tour Report	1/2		4/6		Evaluation in Semester – 6						
	Part-II Total	16/ 17		17/ 19		430	370	800	25			
Part-III: Ability	Enhancement Courses		1									
<no subject<br="">code></no>	FS-4 Community Engagement	-	2	-			Remarl	ś	Audit course			
	Part-III Total	0	2	-		0	0	0				

Total (Part-III to Part-III)	16/ 17	2	17/ 19	-	430	370	800	25
	35/38		35/38		800			

Trans-Disciplinary Elective offered by Department to the Cluster for SEM- V Students

Course Type	Course Code	Course title	Credit
Trans-Disciplinary	21UMBTD501	IPR, Copyright and Patenting	2
Elective			

Semester-VI

NOTE:

Student are given option to choose from any ONE of the following combinations/schemes based on his/her choice for progression either in Research in the same/ allied field (Scheme - A)or in higher studies and/or placement(Scheme - B)

A. Core 15 + Core Enrichment-4 + Core Enrichment – 5

OR

B. Core – 15 + Core – 16 + Core – 17 + Core Practical + Core Enrichment - 4

The research in the form of Project / Start-up/Skill Training will be broadly based on the two verticalskeeping in view the Local, National and Global needs: **Sustainable development / Health & Wellness.**

	Semester	-V]	[- S	CH	EME – A				
					SEE	Maximum Marks			
Course Code	Course	H H	Contact Hrs/wk.		Durat ion	CIA	SEE	Total	Credits
			Tu	Р	nrs				
Part–II									
21UMBCC601	Core15:(App) - Biostatistics and Bioinformatics	4	-	_	3	30	70	100	4
	Core Enrichment – 4 (Continue from Semester – V, Evaluated in Semester – 6)	_			-	100	-	100	4
	Core Enrichment 5: Project / Start-up/ Skill Training	2		24		***	***	300	14
			30					500	22
	Part-II Total							500	22
						Total	Marks:	500	

	Sei	mes	ter-	-VI	- SCH	EME -	-B		
			Contact Hrs/wk. SEE Durat ion		SEE	Maximum Marks			
Course Code	Course	H H			Durat ion	CIA	SFF	Total	Credits
		Т	Tu	Р	пгя				
Part–II									
21UMBCC601	Core15:(App) - Biostatistics and Bioinformatics	4	-	-	3	30	70	100	4
21UMBCC602	Core16: (Adv) – Medical Microbiology	5	-	-	3	30	70	100	5
21UMBCC603	Core – 17: (App) – Forensic Microbiology	5	-	-	3	30	70	100	5
21UMBCC604	Core Practical – 6 – Medical and Forensic Microbiology	-	-	9	9*	40	60	100	4
	Core Enrichment – 4 (Continue from Semester – V, Evaluated in Semester – 6)	_			-	100	-	100	4
			23			230	270	500	22
	Part-II Total							550	22
Total Marks:500									

*6 hrs on Day – 1 and 3hrs on Day -2

Course	Semester	Course /	Contact	No. of	Credit/	Total
Code		Component	Hrs Courses		Course	Credits
		A. Ability En	hancement Co	urse (AEC)		
(i) Abi	ility Enhanc	ement Compulsory	y Course (AEC	<i>C</i>)	Γ	
	Ι	AECCI: Introduction to SDG (online course)	-	1	Remarks	Audit Course
	I & II	AECC II: Environmental Conservation and Sustainable Development	1 Hr / Week / Semester	1	1+1	2
	I & II	AECC III: Human Values for Holistic Living	1 T + 2 Tu /Week /Semester	1	1+1+1	3
					Sub Total	5 + Audit course
(ii) Ski	<u>ll Enhancen</u>	nent Course (SEC)				
As per	Any Semester between II –V/VII	SEC-I *Value Added Courses	40 Hrs	1	1	1
common list	Any Semester between III – V/VII	SEC-II **Co- Curricular Course	80 to 120 Hrs	1	2	2
					Sub Total	3
		B. I	Finishing Scho	ol		
		FS I to FS IV C	ompulsory to I	2arn Degree.		
	Ι	FS I: Student Induction Program	9 weeks Phase 1, Phase 2, Phase 3	-	Remark	Audit course
	Across I & II Semester s	FS II: Fundamentals of Design Thinking (Online/Offline)	40 to 60 Hrs	1	Remark	Audit course
	Semester s I to V / VII	FS III: Career Acceleration Programme – CAP (Placement	2 Hrs / Week /Semester	As per syllabus	Remarks	Audit course

Formation of Part-III

	Training)				
Semester V (3 yrs program) Semester VI (4 yrs program)	FS IV: Community Engagement	Twice a month	1	Remarks	Audit course
	FS V to FS VIII O	ptions for Adv	anced Learn	ers	
Any semester from II to V/VII	FS V: Indian &Foreign Languages	-	Any number of courses	Remarks	Audit course
Any semester from II to V/VII	FS VI: Any number of Online course(s) from select MOOC platforms	-	Any number of courses	Remarks	Credit as per provider/ audit course
Any semester from III to V/VII	FS VII: Advanced Design Thinking	-	1	Remarks	Audit course
Any semester from I to VI/VIII	FS VIII: #Extra Credit Course Any number of courses from any UG program across the College	Self-study	Any number of courses	As per course offered	As per credit(s) earned across all courses opted

*Value Added Courses - Option to student to choose at least 1 from a list of courses offered by any department across the Institution.

****Co-Curricular Courses** - Option to students to choose 1 from a list of courses offered by any department across the Institution.

Student may opt for any course of the odd/even prevailing semester from any UG program across the Institution with the following guidelines:

- a. Attending class not mandatory.
- b. May be mentored by the course teacher.
- c. Preparation through self-study.
- d. CIA not mandatory; evaluated for total marks at the end of the semester.
- e. Indicates options to appear for the course through examination application and payment of examination fees of that course.
- f. Credits earned through each course indicated in the consolidated mark sheet as extra credits; not included for CGPA, percentage marks and classification.

S. No	PART	Total Marks	Total Credits	
1.	PART I: Language Course	400	12	
2	PART II:	4000	128	
Ζ.	Core, IDC, DSE, TDE	4000		
	PART III:			
2	AECC-I, II & III	Domorka	08 + Credit audit	
5.	SEC- I & II	Remarks		
	FS I, II, III & IV			
	TOTAL	4400	148	

TOTAL MARKS & CREDIT DISTRIBUTION TO EARN THE DEGREE

VALUE ADDED COURSES (VAC) COURSES OFFERED BY THE DEPARTMENT

Sr. No.	Course Code	Course Title	Course Duration	Credits
1	21UMBVA01	Mushroom Cultivation	40 Hrs	1

CO-CURRICULAR COURSE (COC) COURSES OFFERED BY THE DEPARTMENT

Sr. No.	Course Code	Course Title	Course Duration	Credits
1	21UMBCOC1	Biofertilizer	80 Hrs	1

DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE) OFFERED BY THE DEPARTMENT (SEM-4)

Sr. No.	Course Code	Course Title	Course Duration	Credits
1	21UMBDE405	Pharmaceutical Microbiology – Theory	50 hrs	3
2	21UMBDE406	Pharmaceutical Microbiology – Practical	6hr/week	2

TRANS DISCIPLINARY ELECTIVE (TDE) OFFERED BY THE DEPARTMENT

Semester	Course Code	Course Title	Course Duration	Credits
4	21UMBTDE1	Microbes in Human Welfare	40 hrs	2
5	21UMBTDE2	IPR, Copyright and Patenting	40 hrs	2

ENCLOSURE - II

Department: Microb	iology Programme: E	B.Sc. Microbiology
Course Code	Course Title (AD)	Credits
21UMBCC501	Core 11: Immunology	4 Credits

Syllabus – Semester – V

Course Description:

Immunology is a branch of medicine and biology that covers the medical study of immune systems in all organisms. Immune system is responsible for fighting against the pathogens and protects the body from infection. This course is divided into five units, each discussing the different aspects of this system, from its basics to the advanced level. Starting with the overview of this system, the course gradually progresses to the finer aspects of the system and the mechanisms by which immune system functions to protect the body. The process of infection, dysfunction of immune system and the prophylaxis through vaccine is also discussed

Course objectives:

After successfully completing this course the student should be able to:

- 1. Demonstrate a comprehensive and practical understanding of basic immunological principles involved in protection mechanism.
- 2. Differentiate between innate and adaptive immunity, primary and secondary responses and identify the role of antigen presenting cells, lymphocytes, and phagocytic cells in immune responses.
- 3. Differentiate between humoral and cell mediated immunity.
- 4. Discuss Dysfunctional immunity and its consequences, Process of infection and vaccination
- 5. Application of Principle of various immune reactions in research and diagnosis

Course	Course Outcomes: Opon completion of this course, the learner will be able to					
CO No.	CO Statement	Blooms taxonomy Level (K1 to K4)				
CO1	Demonstrate a comprehensive and practical understanding of basic immunological principles involved in protection mechanism.	К3				
CO_2	Differentiate between innate and adaptive immunity, primary and secondary responses and identify the role of antigen presenting cells, lymphocytes, and phagocytic cells in immune responses.	K3& K4				
CO ₃	Differentiate between humoral and cell mediated immunity.	K3				
CO ₄	Discuss Dysfunctional immunity and its consequences, Process of infection and vaccination	К3				
CO ₅	Application of Principle of various immune reactions in research and diagnosis	K4& K5				

Course Outcomest Upon completion of this course, the learner will be able to

Course Content	Hours
Unit 1: Immunity and Immunogen	12hrs
Types of immunity: Natural, Acquired, herd, Innate, specific	
• Cells and organs of immune system : An overview	
Primary response and generation of memory	
• Antigen: Immunogenicity versus antigenicity, Factors influence	cing
Immunogenicity, Adjuvant, Epitope and Haptens	
• Antigen processing and presentation (Endogenous and Exogenous Antigens)	
Unit 2: Antibody	12hrs
Antibody: Basic structure of Antibody	
Immunoglobulin classes and their Biological activities	
• Epitope and Receptors on immunoglobulin molecule	
Antibody Diversity and Clonal Selection Theory	
Overview of Monoclonal Antibody	
Unit 3: Dysfunctional Immunity	12hrs
Immunodeficiency Diseases	
• Hypersensitivity	
Autoimmune diseases	
Overview of Tumor immunity	
Overview of Transplantation immunity	
Unit 4: Infection and Prophylaxis	12hrs
Introduction to the normal flora of healthy human host	
• Host -microbe interactions: Process of Infection, Pathogenicity, Virulence	and
infection	
• Microbial adherence: Penetration of epithelial cell layers, Events in infec	tion
following penetration	
Microbial virulence factors	
Vaccines: Conventional and Modern	
Unit - 5: Haematology and Serology	12hrs
• Study of Blood and Blood groups: Discovery of human blood group system	
• Principle, significance and procedure of blood transfusion, Blood coagulation	
• Serology - In vitro antigen: antibody reaction: Strength of antigen - antib	ody
reaction: Antibody affinity and avidity	
• Precipitation and Agglutination Reactions: (in fluid and g	gel),
immunoelectrophoresis, Haemagglutination, Bacterial Agglutination, Pas	sive
Agglutination and agglutination inhibition	
Other reactions: Radioimmunoassay, ELISA, Western Blot, Immunoflourescen	ice

Text Books:

- J.Kuby, R. A. Goldsby ,T.J.Kindt , B.A. Osborne (2013). Immunology 7thedition.
 W.H. Freeman and Company , New York (UNIT 1,2.4,5)
- P.M. Lyolyard , A. Whelan, M.W. Fanger. (2011) Instant Notes in Immunology. 3rd edition. Garland Science Taylor and Francis Group, Newyork (UNIT-3)

Reference Books:

- C.A.Janeway, P.Travers, M. Walport, M.J. Shlomchick. (2005). Immunology the immune system in health and Diseases. 6th edition. Garland Science Taylor and Francis Group, Newyork
- K.Murphy, P.Travers, M. Walport. (2008). Janeway's Immunology. 7th edition. Garland Science Taylor and Francis Group, Newyork
- I.Roitt.(2017). Roitt's Essential Immunology, 13th edition Blackwell Science
- J.M.Cruse, R.E.Lewis. (2009). Illustrated Dictionary of Immunology. 3rd edition. CRC Press Taylor and Francis Group, New York.
- A. K. Abbas, A. H.H.Lichtman, S.Pillai. (2017).Molecular and Cellular Immunity. 9th edition. Elsevier
- R. M. Atlas (2015). Principles of Microbiology. 2nd edition. Wm.C.Brown Publishers
- Prescott , Harley , Klein (2007). Microbiology 5th edition. McGraw-Hill Publishers

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

- https://www.coursera.org/specializations/immunology
- <u>https://www.my-mooc.com/en/mooc/fundamentals-immunology-part-1-ricex-bioc372-1x-</u>
 <u>1/</u>

Suggested MOOCs

- <u>https://onlinecourses.swayam2.ac.in/cec20_bt05/preview</u>
- <u>https://www.pasteur.fr/en/education/programs-and-courses/e-learning-mooc/mooc-innate-immunity-institut-pasteur</u>

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05

C	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
			(Grand Total	30

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title (AD / AP)	Credits
21UMBCC502	Core 12: Molecular Biology and Genetic	4 Credits
	Engineering	

Course Description:

The present core course has been designed to cover all the essential aspects related to Molecular Biology field. It incorporates a brief overview of Nucleic acid, its salient features and models of DNA and RNA. It mainly focuses on the study of cell incorporating DNA Replication, Transcription and Translation in prokaryotic as well as eukaryotic organisms. It also emphasizes Post Transcriptional Modifications and Processing of Eukaryotic RNA. The course will also impart detailed explanation of Prokaryotic and Eukaryotic Transcriptional Regulation along with mechanism of Gene Silencing. During this course, the students will be imparted comprehensive understanding about key concept of DNA Repair Mechanisms. The application of the knowledge and the skill thus obtained in manipulating gene and constructing genetically modified organisms is also dealt with.

Course Objectives:

After completion of this course, student will be able to:

- 1. Understand the basics of human genetics and hereditary
- 2. Comprehend the mechanism of replication and recombination
- 3. Describe the process of transcription and translation in Prokaryotes
- 4. Develop knowledge of the biochemical basis of Mutation, Mutagenesis and repair
- Understand and analyse the basic concept and scope of recombinant DNA technology, recognize its various tools, it applications, and ethical aspects of using RDT in developing products.

Course O	Course Outcomes: Upon completion of this course, the learner will be able to					
CO No.	CO Statement	Blooms taxonomy				
		Level (K1 to K4)				
CO1	Understanding of the basics of human genetics and hereditary	K2				
CO2	Comprehension of the mechanism of replication and recombination	К3				

CO3	Description of the process of transcription and translation in Prokaryotes	K4	Ļ
CO4	Development of knowledge of the biochemical basis of Mutation, Mutagenesis and repair	K4	ļ
CO5 Understandingand analysing the basic concept and scope of recombinant DNA technology, recognize its various tools, it applications, and ethical aspects of using RDT in developing products.			ζ4
Course C	ontent		Hours
Unit: 1 M	lolecular genetics and organization of genetic materials		12 hrs.
 Co DN Di Ge Ma 	oncept of central dogma NA as genetic material: experimental evidences fferent forms of DNA enomic organization of Eubacteria and Archaebacteria endelian Laws		
Unit: 2 R	eplication and Recombination		12 hrs.
Ex Pro Re Pro Co Tr	equipper and enzymes involved in DNA R ocess of Replication in Prokaryotes equipped of Replication ocess of Recombination- mechanism of gene transfer- Transformation onjugation, transduction ansposable elements	,	
Unit: 3 G	ene Expression and Regulation		12 hrs.
Pro Po po Ge tra Ar Th Re	okaryotic Transcription: Machineries and Mechanism ost transcriptional modifications of RNA: overview of splicing lyadenylation & editing enetic code, prokaryotic Translation (machineries and mechanism) inslational modifications in overview of Levels and modes of regulation of gene expression are Operon Models: Regulation of lactose utilization – The lac egulation of tryptophan biosynthesis – The trp operon	, capping,) and post operon &	
Unit 4: M	lutations and Repair		12 hrs.
Oc Oc M Pl Si DN	ccurrence, kinds of Mutation, spontaneous & induced Mutation lutagens, detection of Mutation Lethal Mutations, Biochemical Mutati henotypic effects of Mutation and Molecular basis of Mutation ignificance & Practical applications of Mutation NA Repair-Types and mechanism	ons	

Unit 5	: Genetic Engineering and rDNA Technology	12 hrs.
٠	Genetic engineering: aims and applications	
•	Genetic manipulations of prokaryotes:	
	a. Isolation of DNA	
	b. Vectors of rDNA Technology - plasmid (pBR322 &pUC), Bacteriophage	
	(lambda phage & M13), Cosmid, Phagmid, BACs, YACs	
	c. Insertion of DNA molecules into a vector	
	d. Transformation and Growth	
	e. Detection of Recombinant molecules – Colony Hybridization	
•	Genetic manipulations of eukaryotes: Genetic manipulation of plant cells	
	(Agrobacterium mediated) and animal cells	
•	Site directed mutagenesis	
•	Molecular Chaperon	

Text Books

- Watson JD, Baker TA, Bell SP, Gann A, Levine M and Losick R (2014) Molecular Biology of the Gene, 7th edition, Cold Spring Harbour Lab. Press, Pearson Publication (UNIT-1-4)
- R.C.Dubey (2010) A textbook of Biotechnology, S. Chand and Company, New Delhi (UNIT-5)
- De Robertis EDP and De Robertis EMF (2006) Cell and Molecular Biology, 8th edition. Lippincott Williams and Wilkins, Philadelphia

Reference books

- Karp G (2010) Cell and Molecular Biology: Concepts and Experiments, 6th edition, John Wiley & Sons. Inc.
- Sambrook J and Russell DW. (2001). Molecular Cloning: A Laboratory Manual. 4th Edition, Cold Spring Harbour Laboratory press.
- Krebs J, Goldstein E, Kilpatrick S (2013). Lewin's Essential Genes, 3rd Ed., Jones and Bartlett Learning
- Gardner EJ, Simmons MJ, Snustad DP (2008). Principles of Genetics. 8th Ed. Wiley-India
- Becker WM, Kleinsmith LJ, Hardin J and Bertoni GP (2016) The World of the Cell, 9th edition, Pearson Benjamin Cummings Publishing, San Francisco
- S.B. Primrose, R.M. Twyman and R.W.Old.(2006) Principles of Gene Manipulation. 7th Edition, S.B.University Press,.
- B.D. Singh (2010) Biotechnology Expanding Horizons. Kalyani Publishers.
- Chatwal R.G., Anand, S.K. (2012). Instrumental Methods of Chemical Analysis. Mumbai: Himalaya publication
- Upadhyay, A., Upadhyay, K., Nath, N. (2009). Biophysical Chemistry: Principles and techniques. Mumbai: Himalaya publication

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Class Test

Suggested reading / E-resources

- <u>https://www.thermofisher.com/blog/ask-a-scientist/what-is-molecular-biology/</u>
- <u>https://plato.stanford.edu/entries/molecular-biology/</u>

Suggested MOOCs

• <u>https://onlinecourses.swayam2.ac.in/cec20_ma13/preview</u>

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
Grand Total					30

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title (F/AD)	Credits
21UMBCC503	Core 13: Phycology (Self Study)	4 Credits

Course Description:

Phycology is the study of algae, which is a major category of microorganisms. Algae are photosynthetic organism found ubiquitously on the planet. This course discusses the general characteristics of algae, its distribution across various habitat and certain salient features which differentiates algae from other microbes. The course spans across five units, emphasizing the general features, distinguishing properties, thallus organization, occurrence, ultra-structure, reproduction pattern and economic importance of different classes of algae. Algal classification and its place in the microbial world is also discusses.

Course Objectives:

At the end of the course, the student will be able to:

- 1. Understand and appreciate general features of algae and their distribution;
- 2. Acquire a consolidated overview on different major groups of algae and algal classification
- 3. Evaluate the importance and functions of various organelles in the ultra-structure of algal cell
- 4. Comprehend the major differences among varied range of thallus organization and pigment systems
- 5. Recognize and appreciate the economic importance of different groups of algae

Course Outcomes: Upon completion of this course, the learner will be able to			
CO No.	CO Statement	Blooms taxonomy	
		Level (K1 to K4)	
CO1	Understand the general features of algae and their distribution	K2	
CO2	Acquire a consolidated overview on different major groups of algae and algal classification	K1/K2	
CO3	Evaluate the importance and functions of various organelles in the ultra-structure of algal cell	К3	
CO4	Comprehend the major differences among varied range of thallus organization and pigment systems	К3	
CO5	Recognize and appreciate the economic importance of different groups of algae	K2/K3	

Course Content	Hours
Unit 1:General account	12hrs
General characteristics & distribution	
Classification & range of thallus organization	
Cell components & Pigment system	
Motility & Mode of reproduction	
Economic importance	
Unit 2: Blue Green algae	12hrs
General features & distribution	
Major groups up to class	
Range of vegetative structure	
• Cell structure & special features (heterocyst, hormogonia, Akinete)	
Mode of reproduction & Economic importance	
Unit 3: Diatoms	12hrs
General characteristics	
Distribution	
Cell structure and its components	
Motility and mode of reproduction	
Economic importance of diatoms	
Unit 4: Green algae	12hrs
General characteristics & distribution	
Classification & cell structure	
Pigment system & motility	
Mode of reproduction	
Economic importance	
Unit5:Brown& Red algae	12hrs
General features	
Major groups upto class	
Cell structure and Pigment system	
Mode of reproduction	
Economic importance	

Text Book:

• Sharma O.P. (2011). Textbook of Algae, 1st Edition, McGraw-Hill Education New Delhi (UNIT-1-5)

Reference Books:

- Dubey R.C. and Maheshwari, D.K. 2010. A Textbook of Microbiology 3rd ed., S. Chand & Co, Ram Nagar, New Delhi, p. 1034. ISBN 81-219-2620
- Pelczar, M.J., Chan, E.C.S., Kreig, N.R. (2002). Microbiology, 5th Edition, New Delhi; Tata Mc Graw Hill Publishing Co. Ltd.
- SundaraRajan S (2003). College Microbiology. Volume 1 & 2. Revised Edition, Vardhana Publications, Bangalore
- Prescott, L.M., J.P. Harley and D.A .Klein (2015). Microbiology, 7th Edition, WM, C Brown Publishers.

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

- <u>https://www.coursera.org/learn/algae</u>
- <u>https://algaefoundationatec.org/</u>

Suggested MOOCs

- <u>https://www.mooc-list.com/tags/algae</u>
- <u>https://algaebiomass.org/blog/10195/introduction-algae-massive-open-online-course/</u>
- <u>https://advancedbiofuelsusa.info/the-algae-foundation-offers-three-massive-open-online-courses-moocs/</u>

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
Grand Total					30

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title (App)	Credits
21UMBCE501	CE 1: Fundamentals of Research Methodology	4 Credits

Course Description:

Research methodology is a way of explaining how a researcher intends to carry out their research. It's a logical, systematic plan to resolve a research problem. A methodology details a researcher's approach to the research to ensure reliable, valid results that address their aims and objectives. This course discusses Research, its objectives, types, mechanism, process, analysis and the intricacies of thesis writing and data presentation in the form of posters and research publications.

Course Objectives:

After completion of this course, student will be able to:

- 1. Understand the concept of research and importance of studying research methodology
- 2. Gain knowledge regarding various components of research
- 3. Distinguish between various scientific documents
- 4. Understand the concept of thesis writing
- 5. Gain elementary knowledge regarding application of statistics in research

Course C	Course Outcomes: Upon completion of this course, the learner will be able to			
CO No.	CO Statement	Blooms taxonomy		
		Level (K1 to K4)		
CO1	Understand the concept of research and importance of studying research methodology	К2		
CO2	Gain knowledge regarding various components of research	К3		
CO3	Distinguish between various scientific documents classes of fungi	K3/K4		
CO4	Understand the concept of thesis writing	К3		
CO5	Gain elementary knowledge regarding application of statistics in research	К3		

Course Content	Hours
Unit 1: Introduction to Research Methodology	12hrs
Introduction to Research and Research Methodology	
Objective of Research	
• Types of research	
Significance of research	
Process of Research	
Unit 2: Components of Research	12hrs
Defining research problem	
Designing research	
• Sample and sampling	
Data Collection	
Data Analysis	
Unit 3: Scientific documents and standards	12hrs
Scientific Documents: Types	
• Journals: types and properties.	
Publication: Types, Ethics and standards	
Quality of Journal: Impact Factor, Citation.	
Google scholar	
Unit 4: Dissertation/Thesis Writing and Presentation	12hrs
Modes of presenting scientific data	
Basics of Poster Presentation	
• Thesis/Dissertation writing: overview, components and order of presentation.	
Ethics of Publication Thesis writing	
Proposal writing	
Unit 5: Elementary statistics for Research	12hrs
• Hypothesis and its types	
Hypothesis testing	
Measures of central tendency: Mean, Mode, Median	
• ANOVA	
Chi Square test	

Text Books:

• C.R. Kothari.(2004) Research Methodology. 2nd Edition, New Age International Publisher. (UNIT-1-5)

Reference Book:

- Dr. Shanti Bhushan Mishra, Dr. Shashi Alok (2017), Handbook Of Research Methodology, 1st Edition, Publisher: Educreation- ISBN: 978-1-5457-0340-3
- Ranjit kumar (2011), Research Methodology A step-by-step guide for the beginners, 3rd edition, SAGE Publications.

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

https://gradcoach.com/what-is-research-methodology/

Suggested MOOCs

https://www.coursera.org/learn/research-methods

https://www.mooc-list.com/tags/research-methodology

https://ugcmoocs.inflibnet.ac.in/index.php/courses/view_ug/330

https://onlinecourses.swayam2.ac.in/cec20 hs17/preview

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
Grand Total					30

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title (App)	Credits
21UMBCE502	CE 2: Microbiology and Healthcare	4 Credits

Course Description:

Microorganisms play a very important role in our day to day life, especially in maintaining the good health. These life forms are very important in causing as well as preventing the diseases. This course deals with the discussion of beneficial roles of microorganisms in maintaining human health. Microorganisms as food, in preparation od food, in food spoilage, in protecting plant health with biopesticides and enhancing the growth with biofertilizers, and the super savior role as vaccine.

Course Objectives:

After completion of this course, student will be able to:

- 1. Understand the historical development of microbiology and the establishment of role of microbes in human health
- 2. Appreciate the beneficial role of microorganisms in Gut health and the importance of Probiotics
- 3. Recognize the role of microorganisms in and as foodas well as in food spoilage
- 4. Evaluate the role of microorganisms in plant health
- 5. Understand the types and benefits of vaccines.

Course Outcomes: Upon completion of this course, the learner will be able to			
CO No.	CO Statement	Blooms taxonomy Level (K1 to K4)	
CO1	Understand the historical development of microbiology and the establishment of role of microbes in human health	K2	
CO2	Appreciate the beneficial role of microorganisms in Gut health and the importance of Probiotics	К3	
CO3	Recognize the role of microorganisms in and as food as well as in food spoilage	K3/K4	
CO4	Evaluate the role of microorganisms in plant health	К3	
CO5	Understand the types and benefits of vaccines.	К3	

Course Content	Hours
Unit 1: History of Microbiology	12hrs
History of microbiology and Health care	
Spontaneous generation verses Bio-generation	
• Germ theory of disease	
Koch Postulate	
• Antibiotics	
Unit 2: Microorganisms as Probiotics	12hrs
Probiotics	
Characteristics of probiotics	
Commercially available probiotic products	
Benefits of probiotic products	
• Prebiotics	
Unit 3: Microorganisms as food	12hrs
Microorganisms as a food source - Single cell protein	
• Mushroom as a complete food and Nutritional level of mushroom	
• Microorganisms in Dairy (Cheese, Yogurt, Buttermilk, Kefir)	
• Microorganisms in fermented food (Pickles, Sauerkraut, Silage, Sausage, Bread)	
Functional Food	
Unit 4: Microorganisms as Bio-fertilizer and Bio-pesticides	12hrs
Definition of Biofertilizer, history and milestones	
• Types of Bio-fertilizer and mode of application	
• Definition of Biopesticide, history and milestones	
• Types of Bio-fertilizer and mode of application	
Advantages and limitations of Biofertilizer and Biopesticide	
Unit 5: Microorganisms as Vaccines	12hrs
Definition and history of Vaccines and vaccination	
• Traditional Vaccines: Live, attenuates vaccines, inactivated vaccines,	
• New generation vaccines: Toxoid vaccines, Recombinant Vaccines, DNA	
Vaccines, sub unit vaccine	
Production of Vaccines	
Pros and cons of vaccination	

Text book:

- Frazier .W.CWesthoff, D.C., (2003). Food Microbiology. 18th edition Tata McGraw-Hill Publication Company (UNIt-2,3)
- Subba Rao, N.S., (1999). Bio-fertilizers in Agriculture and Agro forestry. New Delhi:Oxford IBH (UNIT-4)

• Pelczar, M.J., Chan, E.C.S., Kreig, N.R. (2003). Microbiology 5th Edition, Tata McGraw-Hill Publication Company (UNIT-1,5)

Reference book:

- Tortora, G.J., Funke, B.R., Case, C.L., (2004). Microbiology Introduction .Singapore: Pearson Education.
- Presscott, M.J., Harley, J.P., Klein, D.A. (2002). Microbiology 5th edition, New York: WCB Mc GrawHill publication

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

- <u>https://www.genome.gov/news/news-release/Microbes-in-us-and-their-role-in-human-health-and-disease</u>
- https://www.amnh.org/content/download/131242/2201977/file/human_microbiome_the_r ole_of_microbes_in_human_health_stepread1.pdf
- https://www.longdom.org/open-access/role-of-microbes-in-human-health-36338.html

Suggested MOOCs

- <u>https://www.wur.nl/en/education-programmes/moocs/show-moocs/nutrition-and-health-human-microbiome.htm</u>
- https://www.my-mooc.com/en/mooc/nutrition-and-health-human-microbiome/

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
Grand Total					30

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title (AD)	Credits
21UMBCE503	CE - 3 -: Pharmaceutical Microbiology	4 Credits

Course Description:

Pharmaceutical industry depends largely on the microorganisms and microbial technology. It is a sector that requires active participation of a microbiologist, a chemist, a biochemist and a skilled technician to carryout production activity at large scale. This course ids designed to give an insight into the operation of a pharmaceutical unit and the role of microorganism as well as a microbiologist in its smooth operation.

Course Objectives:

The course is designed with the objectives to give students

- 1. A better perception about the importance of pharmaceutical microbiology standards
- 2. Basic understanding about the role of microbial technology in industries
- 3. Skills necessary in pharmaceutical industry/laboratories/ Research institutes
- 4. An understanding about the standard operating procedures as perPharmaceutical regulatory authorities

Course O	Course Outcomes: Upon completion of this course, the learner will be able to			
CO No.	CO Statement	Blooms taxonomy Level (K1 to K4)		
CO1	To get a better perception about the importance of pharmaceutical microbiology standards	К2		
CO2	To have a basic understanding about the role of microbial technology in industries	K2		
CO3	To acquire skills necessary in pharmaceutical industry/laboratories/ Research institutes	K3		
CO4	To learn and apply the standard operating procedures as per Pharmaceutical regulatory authorities	К3		

Course Content	Hours
Unit 1: Introduction to Pharmaceutical Industry	10 hrs
Role of a microbiology in a pharmaceutical industry	
Good Laboratory Practices (GLP) in pharmaceutical industry.	
Microbiology Laboratory and standards in industry	
• Regulatory practices and policies: FDA and NGCMA.	
Unit 2: Processes in Pharmaceutical Industry	10 hrs
Good manufacturing practices and Good microbiology laboratory practices.	
• QA and QC in industry	
Concepts of pharmaceuticals, biologics and biopharmaceuticals	
Types of pharmaceutical microbiology laboratories: Sterile & Nonsterile	
• SOP, clean room, zones, microbial filters, media	
Unit 3: Quality control: Microbiology Laboratory	10 hrs
Microscopic techniques for particulate matter	
Antimicrobial testing of pharmaceutical products	
Microbial Limit test, Water analysis	
Bacterial Endotoxin Testing (BET)	
Environmental Monitoring	
Unit 4: Microbial control in pharmaceutical industries	10 hrs
• Disinfection: Classification, mode of action, factors influencing disinfectants	
Sterilization: Introduction, significance	
Microbiological assessment of various pharmaceutical products	
• Fumigation, Growth Promotion test, Biological indicators, Chemical Indicators	
Unit 5: Role of microbes in pharmaceutical formulations	10hrs
Pharmaceuticals produced by microbial fermentations (streptokinase,	
streptodornase).	
 Drug formulations, Carriers and delivery systems, targeted drug delivery, Application of microbial anzumas in pharmacoutical industry. 	
 Application of incrobial enzymes in pharmaceutical industry Microbial production and spoilage of pharmaceutical products 	
merodul production and sponage of pharmaceutear products	

Text Book

- S. P., Vyas, V. Dixit (2007) Pharmaceutical Biotechnology, CBS Publishers & Distributors New Delhi
- R. Bhatia, (2000). Quality Assurance in Microbiology. CBS publishers & distributors, New Delhi.
- S. H. Willing, M.M. Tuckerman, W. S. Hitchings IV.(2007). Good manufacturing practices for Pharmaceuticals. 2nd edition. Mercel Dekker NC New York

Reference Book

- Stephen P. D., Norman A. H., Sean P. G., Brendan F. G. (2011) Hugo & Russell Pharmaceutical Microbiology 8th Ed. Wiley-Blackwell Publishing house
- John S. Wolfson and David C. Hooper, (1989) Quinolone antimicrobial agents. American Society for Microbiology, Washington.
- Cooper M. S. (1972) Quality control in the Pharmaceutical Industry Vol.2 Academic Press Inc

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

• https://www.iptsalipur.org/wp-content/uploads/2020/08/BP303T PMB UNIT I.pdf

Suggested MOOCs

- <u>https://www.mooc-list.com/tags/microbiology</u>
- https://www.classcentral.com/tag/microbiology

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
Grand Total					30

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title	Credits
21UMBCC504	Core Practical - 5: Clinical and MolecularMicrobiology	9hrs/week - 3 Credits

Course objectives:

After completing this course, Students will be able to:

- 1. Collect blood samples and other clinical samples and perform various serological and hematological diagnostic tests
- 2. Understand the significance of blood count, various blood components and their analysis
- 3. Isolate genetic material from different types of cells
- 4. Quantify the nucleic acid material
- 5. Perform gene transfer in bacteria using various techniques
- 6. Perform mutation in bacteria

List of Practical:

- 1. Study of serological and haematological reactions
 - a. Agglutination (blood grouping, Serodiagnosis of enteric fever by Widal test)
 - b. Serodiagnosis of syphilis by RPR Test
 - c. Total count of RBC and WBC
 - d. Differential count of WBC
 - e. Haemoglobin estimation by Sahli's method
 - f. Bleeding time by filter paper technique and clotting time by capillary method
 - g. Erythrocyte Sedimentation Rate (ESR-demonstration)
- 2. Blood Chemistry
 - a. Blood sugar estimation by GOD / POD method
 - b. Blood urea by DAM method
 - c. Serum bilirubin estimation
 - d. Cholesterol estimation
 - e. Ouchterlony Double Diffusion (Demonstration)
- 3. Isolation of genomic DNA from bacteria
- 4. Isolation of plasmid DNA from bacteria
- 5. Agarose gel electrophoresis of isolated DNA
- 6. Isolation of RNA from yeast cells
- 7. Quantification of DNA and RNA by specrophotometry
- 8. Determination of Tm value of DNA
- 9. Bacterial Transformation
- 10. Bacterial Conjugation
- 11. U.V induced mutagenesis
- 12. Plasmid curing by Acridine orange (Demonstration)

Reference Books:

- 1. Broude AI: Medical Microbiology and Infectious Diseases, WB Saunders Co.
- Jawetz, Melnick & Adelberg's: Medical Microbiology, 26th Edition, Mc Graw Hill Companies, a LANGE medical book.
- 3. Chapel and Haeney: Essentials of Clinical Immunology, Blackwell Scientific Publications.
- 4. Forbes BA, Sahm DF and Weissfeld AS: Bailey & Scott's Diagnostic Microbiology, Mosby
- 5. T.A.Brown, Genome-2, 2nd edition
- 6. Verma and Agrawal, Cell biology, Genetics, Molecular biology
- 7. Karp, cell and Molecular biology

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title	Credits
21UMBCE504	CE 1 Practical: Fundamentals of Research Methodology	6hrs/week 2 Credits

Course Objectives:

The student shall be able to:

- 1. Acquire skills related to the Research problem formation and research designing
- 2. Understand the importance of scientific writing
- 3. Identify the statistical methods most suitable for data analysis

List of Practical:

- 1. Writing research proposal
- 2. Protocol filling and submission
- 3. Making data analysis using statistics

Reference book:

1. C.R. Kothari.(2004) Research Methodology. 2nd Edition, New Age International Publisher.

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title (F)	Credits
21UMBCE505	CE 2 Practical: Microbiology and Healthcare	6 hrs/week 2 Credits

Course Objectives:

After completing this course, Students will be able to:

- 1. Isolate microorganisms from different material and can study them
- 2. Can predict on the quality of the material

List of Practicals

- 1 Isolation and identification of microorganisms from butter milk
- 2 Isolation and identification of Probiotics from commercially available probiotic food
- 3 Isolation of Nitrogen fixing bacteria from root nodules
- 4 Isolation of non- symbiotic bacteria from Rhizospheric soil
- 5 Isolation and identification of fungus from fermented food (Bread)

Reference book:

- 1. Tortora, G.J., Funke, B.R., Case, C.L., (2004). Microbiology Introduction. Singapore: Pearson Education.
- 2. Presscott, M.J., Harley, J.P., Klein, D.A. (2002). Microbiology 5th edition, New York: WCB Mc GrawHill publication

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title (F)	Credits
21UMBCE506	CE-3: Practical: Pharmaceutical Microbiology	6 hrs/week 2 Credits

Course Objectives:

The student shall be able to:

- 1. Acquire skills to examine microbial load of pharmaceutical products
- 2. Understand the role of microbes in drugs
- 3. Identify different microbes associated with products, enumerate them and understand their role
- 4. Evaluate different parameters affecting pharmaceutical product quality.

List of Practical

- 1. Sterility testing by using *B. sterothermophilus / B. subtilis*.
- 2. Testing for microbial contamination. Microbial loads from syrups and suspensions
- 3. Determination of antimicrobial activity of chemical compounds (like phenol, resorcinol and formaldehydes) Comparison with standard products.
- 4. Microscopic analysis of sterile injectables and tablets
- 5. Quality assessment of pharmaceutical products with special reference to regulatory affairs as per the standard methods

Reference Books

- R. Bhatia, (2000). Quality Assurance in Microbiology. CBS publishers & distributors, New Delhi.
- S. H. Willing, M.M. Tuckerman, W. S. Hitchings IV.(2007). Good manufacturing practices for Pharmaceuticals. 2ndedition. Mercel Dekker NC New York

Department: Microb	iology Programme: B	Programme: B.Sc. Microbiology	
Course Code	Course Title (Adv/App)	Credits	
21UMBCC601	Core 15: Biostatistics and Bioinformatics	4 Credits	

Course Description:

This course explores the meaning of Biostatistics. It introduces students to some basic terms like variable, continuous variable, discrete or discontinuous variables population, sample, histogram, frequency, classes, class interval and frequency distribution. Students will learn about the measures used in biostatistics, probability, hypothesis testing, correlation and regression. Use of computer have been included with basic use of programs such as MS Word, MS Excel and MS Powerpoint. Along with biostatistics, the course is designed to give students both a theoretical background and a working knowledge of the techniques employed in bioinformatics. Emphasis will be placed on biological sequence analysis and its applications.

Course objectives:

After successfully completing this course the student should be able to:

- 1. Apply statistics and informatics methods for the analysis of data generated in biomedical research.
- 2. Comprehend the application of Biostatistics through Practical examples covering both small-scale lab experiments and high throughput assays.
- 3. Understand the basics of computer software and its applications
- 4. Analyse the experimental data with the help of suitable bioinformatics tool
- 5. Database searching and retrieval of information for the research and academics

Course Outcomes: Upon completion of this course, the learner will be able to		
CO No.	CO Statement	Blooms taxonomy Level (K1 to K5)
CO1	Understand basic concepts of statistics and their importance.	K1, K2
CO ₂	Interpret results of commonly used statistical analyses in written summaries.	K2, K3
CO ₃	Create graphs using Statistics to communicate important information about data, and interpret these graphs.	K4, K5
CO ₄	Use computers for analysis of biological data	К3
CO ₅	Use of important biological databases, use tools to retrieve data, and compare the data of the biological macromolecules	К5

Course Content	Hours
Unit 1: Concepts of Biostatistics	12hrs
Biostatistics, its basic terminologies and applications	
Data Collection and presentation.	
• Sampling methods, Random and non-random sampling.	
Frequency Distribution	
Graphical Representation of Data	
Unit 2:Measures of Biostatistics, Probability Distributions	12hrs
Measures of central tendency Mean, median and mode.	
• Measures of dispersion- Range, variance, standard deviation, Coefficient of	
variance	
Laws of Probability.	
Normal Distribution, Binomial Distribution	
Poisson distribution	
Unit 3:Hypothesis Testing, Correlation and Regression Analysis	12hrs
• Types of hypothesis.	
• Student's t-test: paired and unpaired.	
Analysis of variance.	
• Chi-square test	
Correlation and Regression analysis.	
Unit 4:Computer Science: Components and Application	12hrs
• Structure of computer: Components, peripherals, uses and types	
• The window screen and parts of window, the control panel	
MS Office: MS Word, MS PowerPoint, MS Excel	
• Internet: History, Basic Concepts, Connection Types, Applications, Search	
Engines and E mail.	
Database: Introduction, Types, File formats,	
Unit 5: Bioinformatics	12hrs
Introduction and importance of Bioinformatics	
• Primary and Secondary Biological databases, Structure databases,	
miscellaneous databases, Information retrieval from Biological database:	
ENTREZ, SRS and DBGET	
Sequence Alignment: FASTA, BLAST and Gap penalties	
Introduction to Drug discovery.	
Chemi-informatics.	

Text Books:

• Banerjee P.K. (2007) Introduction to Biostatistics: S Chand Publication, New Delhi, India (UNIT: 1,2,3)

• Attwood, T.K., Parry. D.J. (2001). Introduction to Bioinformatics: Benjamin Cummings (UNIT: 4 & 5)

Reference Books:

- Andreas, D. B., Ouellette, B.F.F. (2004). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition: Wiley publication.
- Misener, S. (2000). Bioinformatics Methods and Protocols: Humana Press.
- Westhead D.R., Parish J.H., Twyman, R.A. (2002). Instant notes in Bioinformatics. Taylor and Francis publications.

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

- <u>https://www.youtube.com/watch?v=_e4mwlqCQrc</u>
- <u>https://www.youtube.com/watch?v=w-uk-_TOgR0</u>

Suggested MOOCs

- <u>https://onlinecourses.swayam2.ac.in/cec23_bt10/preview</u>
- 2.<u>https://onlinecourses.swayam2.ac.in/cec23_bt02/preview</u>

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
			(Grand Total	30

Department: Microb	iology Programme: B	Programme: B.Sc. Microbiology	
Course Code	Course Title (Adv/App)	Credits	
21UMBCC602	Core 16: Medical Microbiology	5 Credits	

Course Description:

Medical microbiology, the large subset of microbiology that is applied to medicine, is a branch of medical science concerned with the prevention, diagnosis and treatment of infectious diseases. In addition, this field of science studies various clinical applications of microbes for the improvement of health. This course of Medical Microbiology begins with a review of the immune system, focusing on the body's response to invading microorganisms. Bacteria are then covered, the general concepts of bacterial microbiology and then the major bacterial pathogens of humans. Subsequent units cover virology, mycology, and parasitology.

Course objectives:

After successfully completing this course the student should be able to:

- 1. Appreciate and understand therole of microorganisms in causing diseases.
- 2. Comprehend and explain epidemiology of the diseases.
- 3. Evaluate and analyse causes, treatment, pathogenicity of viruses, bacteria, fungi and parasites
- 4. Understand the control measures for the transmissible diseases
- 5. Apply the advanced methods for the diagnosis

Course Outcomes: Upon completion of this course, the learner will be able to			
CO No.	CO Statement	Blooms taxonomy Level (K1 to K5)	
CO_1	Appreciate and understand the role of microorganisms in causing diseases.	K1, K2	
CO ₂	Comprehend and explain epidemiology of the diseases.	K2, K3	
CO ₃	Evaluate and analyse the causes, treatment, Pathogenicity of viruses, bacteria fungi and parasites	K4, K5	
CO ₄	Understand the control measures for the transmissible diseases	К3	
CO ₅	Apply the advanced methods for the diagnosis	K5	

Course Content	Hours
Unit 1: Epidemiology and host –parasite relationship	12hrs
Definitions: Signs, symptoms and syndrome of disease, stages of infectious	
diseases-incubation period, prodromal phase, Invasive phase, decline phase	
• Infection and their types	
Bacteremia, septicemia, pyamia, toxemia and Viremia	
• Epidemic, Endemic, Pandemic, Zoonotic and Exotic	
• Dynamics of disease transmission: Causative or etiological agents, sources of	
reservoir of infection	
Unit 2:Study of pathogenic organisms: Bacteria and Bacteria like organisms	12hrs
Morphology, cultural characteristics, biochemical characteristics, serology,	
lab	
diagnosis and treatments of	
• Enteric pathogens (Shigella and Salmonella)	
Pyogenic organisms – Staphylococcus and Streptococcus	
Mycobacterium tuberculosis and Mycobacterium leprae	
• Rickettsia	
• Chlamydia	
Unit 3:Study of pathogenic organisms:	12hrs
Morphology, cultural characteristics, serology & lab diagnosis of :	
• Parasites : Plasmodium, Giardia and Entamoeba	
• Fungus : Candida and Aspergillus	
• Spirochetes – Treponema, Leptospira	
• Metazoan diseases – Ascariasis and Filariasis	
• Tuleremia.	
Unit 4:Viral diseases and their diagnosis with treatments	12hrs
Symptoms, diagnosis and treatments of:	
Hepatitis: Hepatitis A & B viruses	
Influenza and Measles	
Chicken Pox Dakies	
• Kaults	

AIDS and Ebola viruses	
Unit 5: Advanced techniques	12hrs
Chemotherapeutic and antimicrobial agents	
Bioavailability of Drug	
Collection, transport and preliminary processing of Clinical pathogens	
• Rapid methods of identification, Molecular methods of identification	
• Gene Therapy	

Text Book

•

Reference Book

- •
- •
- •
- •
- •

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

- <u>https://iums.ac.ir/files/microb/files/Murray.pdf</u>
- https://repository.poltekkes-kaltim.ac.id/id/eprint/1153/1/medical%20microbiology.pdf

Suggested MOOCs

- https://ugcmoocs.inflibnet.ac.in/index.php/courses/view_ug/248
- <u>https://pll.harvard.edu/course/medical-microbiology?delta=0</u>
- <u>https://www.mooc-list.com/tags/microbiology</u>

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
Grand Total					30

Department: Microb	iology Programme: I	Programme: B.Sc. Microbiology		
Course Code	Course Title (App)	Credits		
21UMBCC603	Core 17: Forensic Microbiology	5 Credits		

Course Description:

Forensic science applies natural, physical, and social sciences to resolve legal matters. The term forensics has been attached to many different fields: economics, anthropology, dentistry, pathology, toxicology, entomology, psychology, accounting, engineering, and computer forensics. Forensic evidence is gathered, examined, evaluated, interpreted, and presented to make sense of an event and provide investigatory leads. This course discusses all these aspects and aims at providing in-depth knowledge and skill to the learner about the subject

Course objectives:

After successfully completing this course the student should be able to:

- 1. Understand the basics of forensic science
- 2. Get familiarize with the biological methods of crime investigation
- 3. Appreciate role of microbiology in forensic science
- 4. Apply principles and techniques of forensic science to solve legal cases.
- 5. Use advanced analytical methods in solving medico-legal cases.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K1 to K5)		
CO ₁	Understand the basics of forensic science	K1, K2		
CO ₂	Get familiarize with the biological methods of crime investigation.	K2, K3		
CO ₃	Appreciate role of microbiology in forensic science	K3, K4		
CO_4	Apply principles and techniques of forensic science to solve legal cases.	К3		
CO ₅	Use advanced analytical methods in solving medico-legal cases.	K4		

Course Content	Hours	
Unit 1: Introduction to Forensic Science	12hrs	
Introduction and historical perspectives of Forensic Science		
Basic Principles of Forensic Science		
Approaches and considerations for forensic microbiology		
Sampling methods		
Medico-legal aspects of forensic sampling		
Unit 2:General Methods of Microbiological Investigation	12hrs	
Role of metagenomic data in microbial forensic		
Importance of molecular markers		
Taxonomic profiling of microbes		
Methods of culturing		
Strategies for storage of microbes		
Unit 3:Biological evidence:	12hrs	
Collection of blood, cerebrospinal fluid, tissue, urine and feces samples		
• Serological, biochemical and molecular tests and risk of infections		
Bacterial translocations in humans		
• Effect of physiological conditions (temp., anaerobic etc.) after death on		
commensal bacteria.		
• Microbial impacts in postmortem toxicology and death time prediction		
Unit 4:Microbial decomposition	12hrs	
Soil microbiology of decomposition		
Freshwater and marine decomposition		
Microbiology of nonhuman models of terrestrial decomposition		
Microbiology of terrestrial human decomposition		
Importance of postmortem interval for microbial investigation		
Unit 5: Advanced Tools for Forensic Analysis		
Comparison microscope, IBIS		
• AFIS, ESDA		
• XRF, EDXRF		
Bioinformatics DNA sequencing and digital matching – NCBI		
Future use of microorganism as physical evidence		

Text Books:

- Carter, D. O., Tomberlin, J. K., Benbow, M. E., Metcalf J. L. Forensic Microbiology, Wiley Publication
- Curry, A. S Methods of Forensic Science Interscience, New York

Reference Book

• Chowdhury, S Forensic Biology B P R & D, Govt of India

• Richard Saferstein, Forensic Science Hand book; Prentice Hall

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

- 1. https://www.sjsu.edu/people/mary.juno/courses/1066/s8/Intro.pdf
- https://www.casdschools.org/site/handlers/filedownload.ashx?moduleinstanceid=7592 &dataid=6762&FileName=01-IntroForensicLaw.pdf

Suggested MOOCs

- 1. https://www.my-mooc.com/en/mooc/ntufsc/
- 2. <u>https://www.mooc-list.com/tags/forensic-science</u>

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
	30				

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code	Course Title	Credits
21UMBCC604	Core Practical - 6: Medical and ForensicMicrobiology	9hrs/week - 3 Credits

Course objectives:

After completing this course, Students will be able to:

- 1. Collect blood samples and other clinical samples and perform various serological and hematological diagnostic tests
- 2. Understand the significance of blood count, various blood components and their analysis
- 7. Isolate genetic material from different types of cells
- 8. Quantify the nucleic acid material
- 9. Perform gene transfer in bacteria using various techniques
- 10. Perform mutation in bacteria

List of Practical:

- 1. Physical, Chemical and Microscopic examination of Clinical samples urine, stool, pus, Sputum
- 2. Isolation, identification of following pathogens from clinical Samples: *E. coli, Salmonella spp., Pseudomonas spp., Proteus spp., Shigella spp., Staphylococcus spp, Streptococcus spp.*(for identification use of keys as well as Bergey's Manual is recommended)
- Study of growth characters of isolated pathogens on following media:Mannitol Salt Agar, Wilson Blair agar, Salmonella Shigella agar, Glucose azide medium, Cetrimide agar, TSI agar
- 4. DNA Fingerprinting (possible follow up activity) Students use provided images of DNA fingerprinting gels to determine paternity and to match a crime scene sample to a suspect. Can be used as a stand-alone lab, or a follow-up after the Gel Electrophoresis lab
- 5. Gel Electrophoresis with Food Color Students pour their own gels, load the gels with food coloring solutions, run the gels, and analyze the results
- 6. Protein Identification Through Immunoassay Students use an immunoassay to show how forensic scientists can determine if blood on a bumper is from a human or another animal
- 7. FTIR (Fourier-transform infrared spectroscopy)-
 - Fibers: identification of fibers and fabrics in a forensic analysis

- Liquid: students obtain spectra of several pure liquids and identify an unknown
- Adhesives: compare and identify adhesive tape and labels
- Plastics: analyse and identify plastics

Reference book

- Broude AI: Medical Microbiology and Infectious Diseases, WB Saunders Co.
- Jawetz, Melnick & Adelberg's: Medical Microbiology, 26th Edition, Mc Graw Hill Companies, a LANGE medical book.
- Chapel and Haeney: Essentials of Clinical Immunology, Blackwell Scientific Publications.
- Forbes BA, Sahm DF and Weissfeld AS: Bailey & Scott's Diagnostic Microbiology, Mosby

ENCLOSURE - III

TRANS- DISCIPLINARY COURSE

Syllabus – Semester – V

Department: Microbiology

Programme: B.Sc. Microbiology

Course Code Course Title		Credits
21UMBTD501	TDE - 2: IPR, Copyright and Patenting	2 Credits

Course Description:

Intellectual property rights are the rights given to persons over the creations of their minds.In India, there are 7 types of intellectual property rights, namely – copyright, trademarks, patents, geographical indications, plant varieties, industrial designs and semiconductor integrated circuit layout designs. This course emphasize on the importance of IPR for the educator, inventor, innovator, creator and for the economic growth of a nation.

Course Objectives:

This course is aimed at

- Familiarizing learners with the nuances of Intellectual Property Rights (IPR) so as to help them integrate the IPR process in their research activities.
- To give the Students "hands- on -training" in literature, including patent search and documentation of research activities that would aid an IPR expert to draft, apply and prosecute IPR applications.
- Facilitate the students to explore career options in IPR, Copyright and Trademark

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K1 to K4)		
CO1	Understand the features and importance of IPR	K2		
CO2	Appreciate the types and features of different types of IP	K2		
CO3	Evaluate the importance of Copyright and its features	K3		
CO4	Critically justify the application and need of Patent	К3		
CO5	Justify the importance of IPR in economic growth and scientific advancement	К3		

Course Content		
Unit 1: Introduction to Intellectual Property Rights		
• What is IPR?		
Concept of Intellectual Property		
Kinds of Intellectual Property		
Economic Importance of Intellectual Property		
Unit 2: The International Scenario	8 hrs	
The International Convention for the protection of new varieties of plants		
Outcome of Duncal's Proposal – TRIPS – Brief account		
Introduction to Patents		
Patenting to Microbes		
Unit 3: Patents in India		
• Indian Patent Act – 1970		
Procedure for obtaining Patents		
Protection of Genetic Resources		
Introduction to Infringement, Infringer		
Unit 4: Copyright and Trademark		
What is copyright and Trademark?		
• What is covered in copyright?		
• What are Related Rights? How they are different from Copyright?		
Why to protect Copyright?		
Unit 5: IPR in Science		
• IPR and Ideation		
IPR and Innovation		
Product and IPR		
Process and IPR		
IPR and Biological material		

Text Books

- T. M Murray and M.J. Mehlman, Encyclopedia of Ethical, Legal and Policy issues in Biotechnology, John Wiley & Sons 2000
- AjitParulekar and Sarita D' Souza, Indian Patents Law Legal & Business Implications; Macmillan India ltd , 2006
- B.L.Wadehra; Law Relating to Patents, Trade Marks, Copyright, Designs & Geographical Indications; Universal law Publishing Pvt. Ltd., India 2000
- P. Narayanan; Law of Copyright and Industrial Designs;Eastern law House, Delhi ,2010

Reference books

- S K Roy Chaudhary & H K Saharay : The Law of Trademarks, Copyright, Patents and Design.Legal Aspects of Technology Transfer: A Conspectus
- WIPO : WIPO Guide To Using Patent Information
- WIPO : Intellectual Property (IP) Audit
- WIPO : WIPO Patent Drafting Manual
- WIPO : The Value of Intellectual Property, Intangible Assets and Goodwill

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

- <u>https://www.wto.org/english/tratop_e/trips_e/intel1_e.htm</u>
- <u>https://ipr.icegate.gov.in/IPR/homePage</u>

Suggested MOOCs

- https://www.mooc-list.com/tags/intellectual-property
- <u>https://www.mooc-list.com/tags/ipr</u>

Methods of assessing the course outcomes

Components of CIA: 100 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	20	20
	Test 2	Units 3,4,5	3 hours	70	70
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
Grand Total					100