Shri Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Rajkot

Affiliated to Saurashtra University, Rajkot

11th AC held on 20th June, 2023

APPENDIX J.1

Enclosures I to V of 12th BoS Mathematics, 22nd May, 2023

Enclosure-BMTI

Sarvodaya Kelavani Samaj Managed Shri Manibhai Virani & Smt. Navalben Virani Science College, Rajkot

(An autonomous College affiliated to Saurashtra University, Rajkot)

Reaccredited at the "A" Level (CGPA 3.28) by NAAC "STAR" College Scheme & Status by MST-DBT A College with Potential for Excellence – CPE (Phase - II) by UGC Accredited at the G-AAA Highest Grade 'A-1' Level by KCG, Govt. of Gujarat UGC-DDU KAUSHAL Kendra GPCB-Government of Gujarat approved Environmental Audit Centre

SCHEME OF LEARNING AND EVALUATION (In light of UGC's LOCF and NEP-2020)

of

B. Sc. MATHEMATICS

(w.e.f 2021-22)

Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot

(An Autonomous College affiliated to Saurashtra University, Rajkot)

Department of Mathematics

B.Sc. Mathematics

Vision of the Department:

To be recognized for excellence in Teaching – Learning adjunct by empowering graduating students to compete in and contribute to the developing needs of the society.

Mission of the Department:

To provide quality teaching-learning, research and service opportunities leading to holistic development of students through collegial exchange of ideas, independent thought, and the highest ethical standards.

Goals:

- a. Provide high quality academic experiences through comprehensive & relevant curriculum at all UG & PG levels.
- b. Foster problem solving ability and research aptitude by extending instructional and infrastructural support and research guidance.
- c. Inculcate the values of multi-disciplinary approach and innovative thinking by facilitating learning experiences in the field of mathematics and its allied fields
- d. Produce graduates with ability to solve real life problems and ability to face the emerging challenges for careers in academia, industry and GOs/NGOs.
- e. Promote ethical and professional environment amongst faculties and students of the department.

GRADUATE ATTRIBUTES

- Academic excellence: Ability to identify key questions, research and pursue rigorous evidence-based arguments
- **Critical Thinking and Effective communications:** Analysis and evaluation of information to form a judgment about a subject or idea and ability to effectively communicate the same in a structured form.
- **Global Citizenship:** Mutual understanding with others from diverse cultures, perspectives and backgrounds
- Life Long Learning: Open, curious, willing to investigate, and consider new knowledge and ways of thinking

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) FOR B. Sc. MATHEMATICS

Our programme will produce Graduates who will attain following PEOs after few years of graduation

- **PEO 1** : **Core competency:** will develop the competency to pursue higher education or successful professional career with synergistic combination of the knowledge and skills of mathematics and allied sciences.
- **PEO 2** : **Breadth of knowledge:** will show capabilities of independently designing, executing and interpreting mathematical problems by integrating the interdisciplinary knowledge of Mathematics and other domains.
- **PEO 3** : **Preparedness:** will reflect professional behaviour and have the potential to show preparedness to take any task or assignment in the capacity of a leader or team member in their chosen occupations or careers and communities.
- **PEO 4** : **Professionalism:** will reflect values and responsibilities in the character to make them fit to work in a multidisciplinary team and to become socio-ethically responsible citizen.
- **PEO 5** : Learning environment: will show attitude of self-learning abilities and keep themselves abreast with new development in all spheres of life.

PROGRAM OUTCOMES (POs) FOR B. Sc. MATHEMATICS

After completion of the programme the Graduate will be able to:

- **PO1** : **Domain knowledge:** Demonstrate the knowledge of concepts, principles and applications of Mathematics in various fields.
- **PO 2** : **Problem analysis:** Acquire critical thinking skills to understand and solve contemporary problems with knowledge and skills.
- **PO 3** : **Design/development of solutions:** Make decisions to develop solutions to given situations/questions, formulate strategies to identify, define and solve problems including, as necessary, global perspectives.
- **PO 4** : Conduct investigations of complex problems: Gain ability to design, conduct experiments, analyse and interpret data for investigating problems in Mathematics and allied sectors
- **PO 5** : Modern tool usage: The ability to acquire, develop, employ and integrate a range of technical, practical and professional skills, in appropriate and ethical ways within a professional context, autonomously and collaboratively and across a range of disciplinary

and professional areas.

- **PO 6** : The Mathematics Professional and society: An awareness of the role of science within a global culture and willingness to contribute to the shaping of community views on complex issues where the methods and findings of science are relevant.
- **PO 7** : Environment and sustainability: Understand complex environmental issues and their interrelationships and requirement of interdisciplinary domains for sustainable development
- **PO 8** : Ethics: Apply ethical principles and commit to professional ethics, responsibilities and norms.
- **PO 9** : Individual and team work: Able to function effectively as individual and as a member in multidisciplinary settings.
- **PO 10 : Communication:** Communicate effectively using different modes (viz. written, verbal and digital) not only with scientific community but also with the society at large.
- **PO 11** : **Project management and finance:** Understand the principles of management of finance and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12 : Life-long learning:** Able to recognize the need to undertake life-long learning and acquire the capacity to do so.

PROGRAMME SPECIFIC OUTCOME (PSOs) FOR B. Sc. MATHEMATICSPROGRAMME

After completion of the programme the Graduate will:

- **PSO 1** : Understand the advanced concepts of mathematics and demonstrate the ability to apply the knowledge of mathematics at an advanced level.
- **PSO 2** : Collect, organize and adapt contemporary knowledge effectively and utilize appropriate computational tools independently and analyse and perform a broad variety of mathematical experiments using mathematical software and internet.
- **PSO 3** : Develop and apply new theories of mathematics to solve a broad variety of problems involving mathematics.
- PSO 4 : Apply critical thinking skills for the sustainable development and develop the

knowledge and skills to secure employment.

PSO 5 : Exhibit the capacity to identify, formulate, and solve problems pertaining to mathematics through research and critically evaluate the theoretical results and recognize the need for, and an ability to engage in life-long learning.

Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (An Autonomous College affiliated to Saurashtra University, Rajkot)

Department of Mathematics

B.Sc. Mathematics

SCHEME OF LEARNING AND EVALUATION For the students admitted from A.Y. 2021-2022& onwards

		Se	meste	er I					
Course Code	Course	Contoo	t Una/ 1	vook	SEE Duration	Maxim	um Ma	arks	Creadita
Course Coue	Course	Contac	ι ΠΓ5/ V	WEEK	(Hours)	CIA	SEE	Total	Creuits
Part-I		Т	Tu	Р					
21ULCEN101	Development of Functional English	3	-	-	3	40	60	100	3
	Part-I Total	3	0	0		40	60	100	3
		-	Part-I	I					
21UMTCC101	Core 1: Differential Calculus (F)	3	-	-	3	30	70	100	3
21UMTCC102	Core 2: Matrix Algebra (F)	3	-	-	3	30	70	100	3
21UMTID101	IDC 1: Physics: Electricity & Modern Physics	3	-	-	3	30	70	100	3
21UMTCC103	Core Practical 1 : Practical on Differential Calculus and Matrix Algebra including mathematical software	-		12#	3	40	60	100	6
21UMTID102	IDC 1 Practical : Physics: Electricity & Modern Physics	-		6@	3	40	60	100	3
	Core Enrichment 1: Concept to Practice	-	1	-	-	(20)	Evalu	uation at the semester	he end of - 4
	Part-II Total	9	1	18		190	330	500	18

	Sei	mester	·ICo	ontin	ue					
Course Code	Course	Contact Hrs/ week			SEE Duration	Maxim	Credits			
		Contene			(Hours)	CIA	SEE	Total		
		Т	Tu	Р			•	•	•	
Part-III: Ability Enhancement Courses										
21AESD101	AECC I: Introduction to SDG (online course)	-	-	-	-	I	Remarks			
-	AECC II: Environmental Conservation and Sustainable Development	1	-	-	-	Evaluation at the end of 2 nd Semester			-	
-	AECC III: Human Values for Holistic Living	1	2*	-	-	Evalua of 2	Evaluation at the end of 2 nd Semester			
	FS 3:Career Acceleration Program	2*	-	-	-	Cumul at the e	Cumulative evaluation at the end of Semester V			
	Part-III Total	2	2*	0		0	0	0	0	
	Total (Part-I to Part-	14+2*	1+2*	18		230	390	600	21	
	III)	33	+2*+2	*			600			

*Out of working Hours. | # 3 hours each on Day 1, 2 3 and 4. | @ 3 hours each on Day 1 and 2

() Final evaluation for 100 marks be made at the end of Semester IV which includes 20 marks CIA in Semester I, II, III each and 40 marks in Semester IV.

SCHEME OF LEARNING AND EVALUATION For the students admitted from A.Y. 2021-2022 & onwards

		Sem	ester	II					
Course Code	Course	Conta	act Hrs	/	SEE	Maxim	um Mari	ks	Credits
Course Coue	Course	week			(Hours)	CIA	SEE	Total	Creuits
Part-I		Т	Tu	Р					
21ULCEN201	Functional English	3	-	-	3	40	60	100	3
	Part-I Total	3	0	0	3	40	60	100	3
Part-II			•						
21UMTCC201	Core 3 :Differential Equations (Ap)	4	-	-	3	30	70	100	4
21UMTCC202	Core 4:Advanced Calculus (Ad)	4	-	-	3	30	70	100	4
21UMTID201	IDC 2: Physics: Electronics and Radiation Physics	3	-	-	3	30	70	100	3
21UMTCC203	Core Practical 2 : Practical on Differential equations and Advanced Calculus including mathematical software	-	-	8#	3	40	60	100	4
21UMTID202	IDC 2 Practical: Physics Practical: Electronics and Radiation Physics	-	-	6@	3	40	60	100	3
	Core Enrichment 1: Concept to Practice	- 1				(20)	Evalua s	e end of 4	
	Part-II Total	11	1	14		190	330	500	18

Semester II										
Course Code	Course	Conta	et Hrs	1	SEE	Maxim	Credits			
Course Coue	Course	week	week			CIA	SEE	Total	Creuits	
T TU P							•	•		
Part-III: Ability Enhancement Courses										
21AEES201	AECC II: Environmental Conservation and Sustainable Development	1	-	-	-	Remarks			2	
21AEVE202	AECC III: Human Values for Holistic Living	1	2*	-	-		Remarks			
	FS 3:Career Acceleration Program	2*	-	-	-	Cumu at the	Cumulative evaluation at the end of Semester V			
	Part-III Total	2+2*	2*	0	-	0	0 0 0			
	Total (Part-I to Part-III)	16+2 *	1+2*	14		230	390	600	26	
		31	1+2*+2	2*			600		26	

*Out of working Hours. | # 2 hours each on Day 1, 2, 3 and 4. | @ 3 hours each on Day 1 and 2

() Final evaluation for 100 marks be made at the end of Semester IV which includes 20 marks CIA in Semester I, II, III each and 40 marks in Semester IV.

Minimum one-month internship pertaining to learning for concept to practice/prototype or product development for start-up/mini and final semester project/skilling in the summer vacation/ combination of semester break and summer vacation in industry/premier research institute/NGO, etc.

SCHEME OF LEARNING AND EVALUATION For the students admitted from A.Y. 2021-2022 & onwards

			Seme	ester I	II				
Course Code	Course	Conto	ot Ure/	wool	SEE	Maximu	Cradits		
Course Coue	Course	Conta	LU 111 S/	WCCK	(Hours)	CIA	SEE	Total	Creatis
Part-I		Т	Tu	Р					
21ULCEN03	Advanced English &Correspondence	3	-	-	3	40	60	100	3
	Part-I Total	3	-	-	3	40	60	100	3
Part-II		Т	Tu	Р					
21UMTCC301	Core 5: Fundamentals of Mathematical Analysis (F)	3	-	-	3	30	70	100	3
21UMTCC302	Core 6: Introduction to Complex Analysis (F)	3	-	-	3	30	70	100	3
21UMTCC303	Core 7: Discrete Mathematics (Ad)	3	-	-	3	30	70	100	3
	DSE 1 C1:##	3	-	-	3	30	70	100	3
21UMTCC304	Core Practical 3: Practical on Computer Aided Mathematics	-	-	8#	3	40	60	100	4
	DSE 1 Practical 1 :##	-	-	6@	3	40	60	100	2
	Core Enrichment 1: Concept to Practice	-	1	-	-	(20)	Evaluation at the end semester - 4		ne end of - 4
	Core Enrichment 2: Internship 1/ Training Project	-	-	-		100	-	100	1
	Part-II Total	12	1	14		320	400	700	19

Course Co
Dent III. (
Part-III: A

2 hou

() Fina marks

Dis B.Sc. l

Course Co	
Part-I	
21UMTI	
21UMTI	

		Seme	ester I	II					
	Contact Hrs/ week			SEE Duration	Maximu	ım Marl	KS	Credits	
, ,				(Hours)	CIA	SEE	Total		
	Т	Tu	Р						
cement Cours	ses			-					
Acceleration n	-	2*	-					Audit course	
Part-III Total		2*			0	0	0		
l (Part-I to	15	1+ 2*	14		360	460	800	22	
art-111)		30+2*	÷			800			

Day 1, 2, 3and 4.

n for 100 marks be made at the end of Semester IV which includes 20 mester I, II, III each and 40 marks in Semester IV.

cific Elective-DSE-1 offered by the Department to the Cluster for all mester – III

Semester III											
INSO	Contact Hrs/ week			SEE Duration	Maximu	KS	Credits				
11 50				(Hours)	CIA	SEE Total		Creuits			
	Т	Tu	Р								
ic hematics	3	-	-	3	30	70	100	3			
ctical on Basic	-	-	6	3	40	60	100	2			

SCHEME OF LEARNING AND EVALUATION For the students admitted from A.Y. 2021-2022 & onwards

			Semes	ster I	V					
~ ~ .					SEE	Maxim				
Course Code	Course	Conta	nct Hrs/ v	week	Duration (Hours)	CIA	SEE	Total	Credits	
Part-I	1	Т	Tu	Р						
21ULCEN04	Effective Communicative Skills	3	-	-	3	40	60	100	3	
	Part-I Total	3	-	-	3	40	60	100	3	
Part-II		Т	Tu	Р						
21UMTCC401	Core 8:Fundamentals of Linear Algebra (F)	4	-	-	3	30	70	100	4	
21UMTCC402	Core 9: Integral and Vector Calculus (Ad)	3	-	-	3	30	70	100	3	
21UMTDA401 21UMTDA402	Core Elective 1: Introduction to Graph Theory / Number Theory	3	-	-	3	30	70	100	3	
	DSE 2: C2##	3	-	-	-	30	70	100	3	
	TDE 1:	2	-	-		100	-	100	2	
21UMTCC404	Core Practical 4: Practical on Numerical Methods and Plotting including Mathematical Software	-	-	8#	3	40	60	100	4	
	DSE 2 Practical: C2##	-	-	6@	3	40	60	100	2	
	Core Enrichment 1: Concept to Practice	-	1	-	-	40	-	100	1	
	Part-II Total	14	1	14		340	400	800	22	
Part-III: Ability	y Enhancement Cours	ses								
-	FS III: Career Acceleration Program	-	2*	-					Audit course	
	Part-III Total		2*			0	0	0		
	Total	17	1+2*	14		380	460	900	25	

(Part-I to Part-III) 32+2*	900	
----------------------------	-----	--

Minimum one month internship pertaining to learning for concept to practice/prototype or product development for start-up/ mini and final semester project/ skilling in the summer vacation/combination of semester break and summer vacation in industry/ premier research institute/NGO etc.

Discipline specific Elective-DSE -2 offered by the Department to the Cluster for all B.Sc. Program Semester – IV

	Semester IV											
Course Code	Course	Cont	not Urs/	wook	SEE	Maxim	Credita					
Course Coue	Course	Contact III 5/ WCCK			(Hours)	CIA	SEE	Total	Creuits			
Part-I		Т	Tu	Р								
21UMTDE401	DSE 2: Mathematics for Scientific Calculation and Analysis	3	-	-	3	30	70	100	3			
21UMTDE402	DSE 2 Practical: Practical on Mathematics for Scientific Calculation and Analysis	-	-	6	3	40	60	100	2			
21UMTDE403	DSE 2: Advance Mathematics	3	-	-	3	30	70	100	3			
21UMTDE404	DSE 2 Practical: Advanced Mathematics Practical	-	-	6	3	40	60	100	2			

TDE 1: Trans disciplinary Elective Course offered by the department to other departments for all B.Sc. Program – Sem-4

Semester IV									
Course Code	Course	Cont	act Hrs	/	SEE	Maximum Marks			Credits
Course Coue	Course	week		(Hours)	CIA	SEE	Total		
Part-I		Т	Tu	Р					
21UMTTD01	TDE 1: Fundamentals of Statistics	2	-	-	-	100	-	100	2

13th BoS All Theory & Practical courses B.Sc. Sem - V and VI, Shri M & N Virani Science College, Rajkot. Page 15 of 78

SCHEME OF LEARNING AND EVALUATION For the students admitted from A.Y. 2021-2022 & onwards

			Seme	ester V	V				
Course Code	Course	Contoo	4 II.ua/ -	waala	SEE	Maxim	um Mai	rks	Credits
Course Coue	Course	Contac	ι ΠΓS/ V	week	(Hours)	CIA	SEE	TOTAL	
Part-II		Т	Tu	Р					
21UMTCC501	Core 10: Fundaments of Numerical Analysis(Ap).	4	-	-	3	30	70	100	4
21UMTCC502	Core 11: Problem solving using programming (Ap)	4	-	-	3	30	70	100	4
21UMTCC503	Core 12: Group Theory(F)	4	-	-	3	30	70	100	4
21UMTCC504	Core 13: Concept Recapitulation Test (CRT) (F)	-	-	-	3	50/ 100	-	50/ 100	1
21UMTCC505	Core 14: Set theory and Logic (Ap) (Self- Study Course) (Ap)	1	-	-	3	30	70	100	4
21UMTCC506	Core Elective 2: Advanced Mathematical Analysis (Ad)/ Topology (Ad) / Fuzzy Mathematics(Ad)	3	-	-	3	30	70	100	3
	TDE 2:	2	-	-		100		100	2
21UMTCC507	Core Practical 5: Practical on Numerical Analysis and Problem solving using computer programming		-	12#	3+3	40	60	100	6
21UMTCC508	Core Enrichment 3: Internship /Training	-	-	-		100		100	1

21UMTCC509	Core Enrichment 4: Minor Project / Dissertation/ Review Article Writing/ Industrial Visit Report	2	4	-	-	-	Evaluation at the semester - (e end of - 6
	Part-II Total	20	04	12		490	410	900	29
Part-III: Ability	y Enhancement Cou	rses							
-	FS III: Career Acceleration Program (CAP)	-	2*	-		Remarks A co			Audit course
21AEFS501	FS IV: Community Engagement	-	2*	-		Remarks			Audit course
	Part-III Total	0	4+4 *	0	-	0	0	0	
	Total (Part-I to Part-	20	4+4 *	12		490	410	900	29
	III)		36+4*	•			900	•	

2 hours each on day of the week.

SCHEME OF LEARNING AND EVALUATION For the students admitted from A.Y. 2021-2022 & onwards

	Semester VI										
Course Code	Course	Conta	oct Hrs	1	SEE Duration	Maximum Marks			Credits		
Course Coue	Course	week			(Hours)	CIA	SEE	TOTAL			
Part-II		Т	Tu	Р							
21UMTCC509	Core Enrichment 4: Minor Project / Dissertation/ Review Article Writing/ Industrial Visit Report	-	-	-	-	100	-	100	4		
21UMTCC601	Core 15: Complex Analysis(Ap)	4	-	-	3	30	70	100	4		
Core Enrichme	nt 5:										
21UMTCC602	Core 16: Advanced Topic in Numerical Analysis (Ad)	4	-	-	3	30	70	100	4		
21UMTCC603	Core 17: Optimization through Mathematical Programming (Ap)	4	-	-	3	30	70	100	4		
21UMTCC604	Core Practical 6: Practical on Advanced Numerical Analysis and Optimization(Ap)	-	-	12#	3+3	40	60	100	6		
	Total	14	4	12	-	230	270	500	22		

OR

Semester VI										
Course Code	Comme	Contact Hrs/ week			SEE Duration (Hours)	Maximum Marks			Credits	
Course Coue	course					CIA	SEE	TOTAL		
Part-II			Tu	Р		•		•		
21UMTCC509	Core Enrichment 4: Minor Project / Dissertation/ Review Article Writing/ Industrial Visit Report	2	4	-	-	100	-	100	4	
21UMTCC601	Core 15: Complex Analysis(Ap)	4	-	-	3	30	70	100	4	
Core Enrichme	nt 5:	•			•			•	<u>.</u>	

13th BoS All Theory & Practical courses B.Sc. Sem - V and VI, Shri M & N Virani Science College, Rajkot. Page 18 of 78

	Project / S Start-up/	kill training /	14	4	-	-	120) 180	300	14	
		Total	20	4	-	-	25	50 250	50	0 22	
Course Code	Semester	Course / Compone	orma / nt	Con H	tact	No. of Course	S	Credi Cour	it/ se	Total Cre	edits
		A. <i>A</i>	<i>Ability</i>	, Enha	nceme	ent Course ((AEC))			
(i) Al	bility Enhance	ement Compul	sory C	Course	(AEC	C)					
	Ι	AECC I : Introduction t SDG (online course)	io	-		1		Remar	ks	Audit Co	urse
	I & II	AECC II: Environmenta Conservation Sustainable Development	al and	1 H Wee Seme	Ir / ek / ester	21UMTCC	2505	Core 14: Concept Recapitula Test (CRT	tion)	2	
	I & II	AECC III: Human Value Holistic Livir	es for 1g	1 T + /Wo /Sem	2 Tu eek ester	1		1+1+	1	3	
								Sub Total		5 + Audit course	
(ii) <i>Sk</i>	kill Enhancem	ent Course (S	EC)			I					
As per	Any Semester between II –V/VII	SEC-I *Value Added Courses		40 Hrs	5	1		1		1	
list	Any Semester between III – V/VII	SEC-II **Co-Curricu Course	ılar	80 to Hrs	120	1		2		2	
								Sub Total		3	
		I	E	B. Fin	ishing	School					
		FS I to FS IV	Com	pulsory	v to E	urn Degree.					
	I	FS I: Student Induc Program	etion	3 wee Phase Phase Phase	ks 1, 2, 3	-		Rema	rk	Audit cou	urse
	Across I & II Semesters	FS II: Fundamentals Design Think (Online/Offlin	s of ting ne)	40 to 0 Hrs	50	1		Rema	rk	Audit cou	urse
	Semesters I to V / VII	FS III: Career Acceleration		2 Hrs Week /Seme	/ ster	As per syllabus		Remar	·ks	Audit cou	urse

		Program (CAP) (Placement training)						
	Semester V (3 yrs program) Semester VI (4 yrs program)	FS IV: Community Engagement	Twice a month	1	Remarks	Audit course		
		FS V to FS VIII O	ptions for Ad	vanced Learner	<i>S</i>			
	Any semester from II to V/VII	FS V: Indian & Foreign Languages	-	Any number of courses	Remarks	Audit course		
	Any semester from II to V/VII	FS VI: Any number of Online course(s) from select MOOC platforms	-	Any number of courses	Remarks	Credit as per provider/audit course		
	Any semester from III to V/VII	FS VII: Advanced Design Thinking	-	1	Remarks	Audit course		
	Any semester from I to VI/VIII	FS VIII: #Extra Credit Course Any number of courses from any UG program across the College.	Self-Study	Any number of courses	As per course offered	As per credit(s) earned across all courses opted		
Grand Total			8+ Audit course+ Extra credit courses					

***Value Added Courses** - Option to student to choose at least 1 from a list of courses offered by any department across the College.

****Co-Curricular Courses** - Option to students to choose 1 from a list of courses offered by any department across the College.

Student may opt for any course of the odd/even prevailing semester from any UG program across the College with the following guidelines:

- a. Attending class not mandatory.
- b. May be mentored by the course teacher.
- c. Preparation through self-study.
- d. CIA not mandatory; evaluated for total marks at the end of the semester.
- e. Indicates options to appear for the course through examination application and payment of examination fees of that course.
- f. Credits earned through each course indicated in the consolidated mark sheet as extra credits; not included for CGPA, percentage marks and classification.

TOTAL MARKS & CREDIT DISTRIBUTION TO EARN THE DEGREE

S.No	PART	Total Marks	Total Credits	
1.	PART I:	400	12	
	Language Course	400	12	
2.	PART II:	2000	129	
	Core, IDC, DSE, TDE	3900	120	
3.	PART III:			
	AECC-I, II & III	Damanlar	8+	
	SEC- I & II	Remarks	audit course	
	FS I, II, III & IV			
	ТОТ	AL 4300	148	

VALUE ADDED COURSES (VAC) COURSES OFFERED BY THE DEPARTMENT

Sr. No.	Course Code	Course Title	Course Duration	Credits
1	21AEVA05	Vedic Mathematics	40	1

CO-CURRICULAR COURSES (CoC) COURSES OFFERED BY THE DEPARTMENT

Sr. No.	Course Code	Course Title	Course Duration	Credits
1.	21AECO09	Quantitative Aptitude & logical reasoning for industrial placement	100 Hrs.	2
2.	21AECO06	Preparation for Gujarat State Competitive Exams	100 Hrs.	2

Enclosure – BMTII

Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous)

Affiliated to Saurashtra University, Rajkot

	Core Course (Theory)							
Fo	For the students admitted from A.Y. 2021-2022 & onwards							
Offering Department: Mathematics Offered to: B.Sc. Mathematics								
Semester – V								
Course Code	Course	Title	Course Credit and					
			Hours					
21UMTCC501	Core 10: Fundame	ents of Numerical	4 Credits - 4 hrs/wk					
	Anal	Analysis. (4 Theory)						

Course Description:

his course is an introduction to the fundamental techniques of numerical analysis, with a focus on he analysis and solution of mathematical problems using computational methods. The course will over topics such as empirical laws and curve fitting, theory of equation, simultaneous linear algebraic quations, finite differences, and interpolation with equal intervals.

Course Purpose:

The purpose of the course Fundamentals of Numerical Analysis is to introduce students to the basic principles and techniques of numerical analysis. This course is designed to help students develop a solid foundation in computational methods for solving mathematical problems, and to prepare them for more advanced courses in numerical analysis and related fields.

By the end of the course, students will have a comprehensive understanding of these topics, as well as the ability to apply numerical methods to solve a variety of mathematical problems.

The course is intended for students in undergraduate programs who have a strong background in nathematics and programming. It will provide students with the tools and techniques they need to inalyze and solve mathematical problems using numerical methods, and will also help them levelop critical thinking and problem-solving skills that are essential in many areas of science, engineering, and technology.

Course Outcomes: Upon completion of this course, the learner will be able to						
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)				
CO1	Recall and describe the empirical laws used in curve fitting, including linear regression, polynomial regression, and exponential regression.	K ₁				

CO ₂	Interpret and explain the concepts of roots, zeros, and solutions of nonlinear equations and their applications.	K ₂
CO ₃	Apply numerical methods, to find the roots of nonlinear equations.	K ₃
CO ₄	Analyze the properties and solutions of linear algebraic equations and their applications in problems from different fields	K4
CO ₅	Evaluate the efficiency and accuracy of numerical methods for solving linear algebraic equations, including direct and iterative methods.	K ₅
CO ₆	Create and implement interpolation algorithms with equal intervals, such as Newton's divided differences and Lagrange's formula, to estimate unknown values of a function at a given point.	K ₆

Course Contents	Hours			
Unit-I: Empirical Laws and Curve Fitting				
 Introduction. The Linear Law. Laws reducible to linear law Principle of Least Squares. Fitting a Straight Line. Fitting a Parabola. Fitting an Exponential Curve. Fitting the curve y = ax^b. 				
Unit-II: Theory of Equation.	10			
 Introduction. Relation between Roots and Coefficients. Equation with Real Coefficients and Imaginary Roots. Equation with Rational Coefficients and Irrational Roots. Symmetric Function of Roots. Formation of Equation whose Roots are Given. Transformation of Equation. Multiple Roots. 				
Unit- III: Simultaneous Linear Algebraic Equation.	10			
 Introduction. Gauss elimination method. Gauss Jordan method. Method of factorization (L.U. Decomposition). Crout's method. Jacobi's method of iteration 				
Unit- IV: Finite Differences.				
Introduction.Finite differences (forward, backward and central).				

• Differences of polynomials.	
• Factorial polynomial.	
Reciprocal Factorial polynomial.	
Polynomial factorial notation.	
• Error propagation in difference table.	
• Other difference operators (Shift, averaging, differential and) and rel	lation
between them.	
Unit- V: Interpolation with Equal Intervals.	8
Introduction.	
Gregory- Newton forward interpolation formula.	
Gregory- Newton backward interpolation formula.	
• Equidistance terms with one or more missing values.	

Pedagogic Tools:

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Classroom discussions and debates
- Online resources

TEXT BOOKS: -

- 1. Numerical methods by Dr. V. N. Vedamurthy& Dr. N. Ch. S. N. Iyengar, (1998) Vikas Publishing house.
- 2. Numerical Methods with C++ Programming, (2009), Nita H. Shah, PHI Learning Pvt. Ltd.

REFERENCE BOOKS:-

- 1. M. K. Jain, S. R. K.Iyengar, R. K. Jain (1996) Numerical method, Problems & Solutions, by, New Age International Pvt. Ltd
- **2.** J. B.Scarforough,(1966) Numerical Mathematical Analysis, Oxford & IBH Publi. Co. Pvt. Ltd.

Suggested reading / E-resources:

- MathWorks: https://www.mathworks.com/
- NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/
- Wolfram MathWorld: https://mathworld.wolfram.com/
- Numerical Recipes: https://www.nr.com/
- The Netlib Repository: https://www.netlib.org/
- GNU Scientific Library: https://www.gnu.org/software/gsl/
- SciPy: https://www.scipy.org/
- Society for Industrial and Applied Mathematics (SIAM): https://www.siam.org/
- Coursera: https://www.coursera.org/
- Khan Academy: <u>https://www.khanacademy.org/</u>

Suggested MOOCs:

- Introduction to Numerical Analysis edX: https://www.edx.org/course/introduction-to-numerical-analysis-2
- Introduction to Numerical Methods NPTEL: https://nptel.ac.in/courses/111/105/111105102/
- Numerical Methods Swayam: https://swayam.gov.in/nd1_cec18_ma11/preview
- Fundamentals of Numerical Methods Swayam: https://swayam.gov.in/nd1_noc19_ma03/preview
- Introduction to Numerical Analysis Udemy: https://www.udemy.com/course/introduction-to-numerical-analysis/
- Numerical Analysis for Applied Mathematics OpenLearn: https://www.open.edu/openlearn/science-maths-technology/mathematicsstatistics/mathematics/numerical-analysis-applied-mathematics/content-section-0
- Numerical Analysis for Differential Equations OpenLearn: https://www.open.edu/openlearn/science-maths-technology/mathematicsstatistics/mathematics/numerical-analysis-differential-equations/content-section-0

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Compor	ient	Content	Duration	Marks	Sub Total
А	Test 1		1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test	2	Remaining 3 units	2 hours	15 (Set for 50)	
В	Assignm	nent			04	10
С	Class activ	vity			06	
					Grand Total	30
Assignment •		Notes written syllabus. Problem Solvi	by the learner on ng.	n the different to	opics in the	
Class activity • • •		Quiz / Surpris Seminar Situation base	e Quiz d question etc.			

Note: Any other assessment tools or methods can be adopted as per requirement of the course

Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous)

Affiliated to Saurashtra University, Rajkot

Core Course (Theory)							
Fo	For the students admitted from A.Y. 2021-2022 & onwards						
Offering Depart	Offering Department: Mathematics Offered to: B.Sc. Mathematics						
	Semester – V						
Course Code	Course	Course Credit and					
Hours							
21UMTCC502	Core 11: Proble	m solving using	4 Credits - 4 hrs/wk				
	program	nming.	(4 Theory)				

Course Description:

We will use the C language for this course of the **Problem solving using programming.** This course provides a comprehensive overview of the C programming language. The course covers the basics of C programming and includes an introduction to programming concepts such as data types, control structures, functions, and arrays.

Throughout the course, students will learn how to write, compile, and debug C programs using a variety of tools, including text editors and integrated development environments (IDEs). They will also learn how to use basic input/output functions.

At the end of the course, students will have a solid understanding of the C programming language and be able to write basic C programs. They will also have the knowledge and skills to continue learning and working with C on their own.

Course Purpose:

The purpose of the course on Problems Solving using Programming is to equip students with the knowledge and skills required to solve complex mathematical problems using the C programming language. The course aims to develop students' problem-solving abilities by teaching them the fundamental concepts and techniques of computer programming.

The course will cover various mathematical problems. Students will learn how to use C programming constructs to develop algorithms for solving these problems. They will also learn how to implement and test these algorithms to ensure their accuracy and efficiency.

By the end of the course, students will have gained a solid understanding of the programming and its applications in solving mathematical problems. They will have developed the skills necessary to solve mathematical problems using computational methods and will be able to apply this knowledge to various including mathematics and science..

Course Outcomes: Upon completion of this course, the learner will be able to					
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)			
CO1	Explain how mathematical problems can be solved using computational methods and C programming techniques.	K ₂			
CO ₂	Write program to solve given mathematical problem using the same	K ₂ , K ₄			
CO ₃	Find errors in the C program and correct it.	K ₃			
CO ₄	Apply C programming constructs to develop algorithms for solving mathematical problems in different fields, such as science, engineering, and finance.	K ₃			
CO₅	Evaluate mathematical solutions, compare and contrast different approaches, and determine the most appropriate solution for a given problem.	K ₁ , K ₂ , K ₃ , K ₄			
CO ₆	Evaluate the suitability of different programming constructs and algorithms for solving mathematical problems based on their efficiency, accuracy, and applicability.	К6			
CO ₇	Create a C program that solves a specific mathematical problem by developing an algorithm, implementing the algorithm, and testing it for accuracy and efficiency.	К6			
CO ₈	Evaluate mathematical solutions, compare and contrast different approaches, and determine the most appropriate solution for a given problem.	К6			

Course Contents			
Unit-I: Introduction to C			
 History of C, C character set Constants, Variables, Keywords, Type Declaration, Type Conversion Hierarchy of operators printf & scanf functions Simple programs using these basic concepts. 			
Unit-II: Decisions and Branching			
 if statement, if-else statements Nested if-else, elseif clause Logical operators, Conditional operators Programs using these concepts 			
Unit- III: Looping Mechanism and User Defined Functions	10		

While loop, for loop do while loop, brook statement	
 do-while loop, break statement Continue statement, gate statement 	
• Continue statement, goto statement	
• Brief introduction to User Defined Functions	
• Programs using these concepts	
Unit- IV: Data types and Preprocessor	10
• Data types in C Integers: long and short types	
 signed and unsigned characters, Signed and unsigned 	
• float and doubles	
• C processors, meaning	
Macro Expansion	
Macros with Arguments	
• Programs using these concepts	
Unit- V: Unit 5: Introduction to Arrays	8
• Arrays, meaning:	
• One dimensional and two dimensional	
• Declaration and initialization of one dimensional and two dimensional arrays	
 Use of one dimensional and two dimensional arrays in simple programs 	
• Ose of one unitensional and two unitensional arrays in simple programs	

Pedagogic Tools:

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Interactive exercises.
- Online resources

TEXT BOOKS: -

- 1. Yashvant Kanetker, (2016), LET US C, 5th Edition, BPB Publications, New Delhi.
- 2. E. Balagurusamy, (2017), Programming in ANSI C, McGrew Hill Education, Seventh Edition.

REFERENCE BOOKS: -

- 1. Brian W. Karnighan and Dennis M. Ritchie, (1988), The ANSI C Programming Language, Prentice Hall.
- 2. V. Rajaraman, (1994), Computer Programming in C, Prentice Hall of India.

Suggested reading / E-resources:

- Learn-C.org: https://www.learn-c.org/
- Geeks for Geeks: https://www.geeksforgeeks.org/c-programming-language/
- Programiz: https://www.programiz.com/c-programming
- Tutorials point: https://www.tutorialspoint.com/cprogramming/index.htm
- C Programming.com: https://www.cprogramming.com/
- C for beginners: https://www.c-for-beginners.com/
- C Programming Notes: http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/1-C-intro/

- Cprogramming.com: https://www.cprogramming.com/tutorial/c/lesson1.html
- Stanford CS Education Library: https://cslibrary.stanford.edu/101/EssentialC.pdf
- C Language Reference: https://en.cppreference.com/w/c/language.

Suggested MOOCs:

- C Programming For Beginners Udemy: https://www.udemy.com/course/cprogramming-for-beginners-/
- C Programming edX: https://www.edx.org/course/c-programming
- Programming in C Coursera: https://www.coursera.org/learn/c-programming
- C for Everyone: Programming Fundamentals Coursera: https://www.coursera.org/learn/c-for-everyone
- C Programming: Getting Started FutureLearn: https://www.futurelearn.com/courses/c-getting-started
- C Programming For Everyone Udacity: https://www.udacity.com/course/cprogramming-for-everyone--ud197
- C Programming Language Fundamentals Pluralsight: https://www.pluralsight.com/courses/c-fundamentals-with-visual-studio-2015
- C Language Tutorial Tutorialspoint: https://www.tutorialspoint.com/cprogramming/index.htm
- C Programming Course Codecademy: https://www.codecademy.com/learn/learn-c
- C Programming Essentials LinkedIn Learning: https://www.linkedin.com/learning/c-essential-training-2/essential-language-features?u=2105568

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Compor	nent	Content	Duration	Marks	Sub Total
Α	Test	1	1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test	2	Remaining 3 units	2 hours	15 (Set for 50)	
В	Assignm	nent			04	10
С	Class activity				06	
					Grand Total	30
Assignment •		Notes written syllabus. Problem Solvi	by the learner on ng.	n the different to	opics in the	
Class activity •		Quiz / Surpris	e Quiz			

•	Seminar
•	Situation based question etc.

Note: Any other assessment tools or methods can be adopted as per requirement of the course

Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous)

		• •	0
	Core Cou	irse (Theory)	
For	r the students admitted fr	rom A.Y. 2021-2022 &	z onwards
Offering Depart	ment: Mathematics	Offered to: B	.Sc. Mathematics
	Sem	ester – V	
Course Code	Course	Title	Course Credit and
			Hours
21UMTCC503	Core 12: Grou	up Theory(F)	4 Credits - 4 hrs/wk
			(4 Theory)

Affiliated to Saurashtra University, Rajkot

Course Description:

The course on Group Theory is designed to provide students in the B.Sc. Mathematics program with a comprehensive understanding of the fundamental concepts and properties of groups. Students will explore the definition and examples of groups, including finite groups and their order. The course covers subgroups, normal subgroups, and the theorems associated with them. The study of permutation groups and cyclic groups will enable students to analyze their structures and classifications. The concept of isomorphism and its properties will be studied, along with group homomorphisms and the first isomorphism theorem. Through lectures, discussions, and problemsolving exercises, students will develop the ability to apply group theory in various mathematical contexts and problem-solving scenarios.

Course Purpose:

The purpose of the course on Group Theory is to equip students in the B.Sc. Mathematics program with a strong foundation in the abstract algebraic structure of groups. By studying groups and their properties, students will develop critical thinking and problem-solving skills essential for further studies in mathematics and related disciplines. The course aims to deepen students' understanding of the fundamental concepts and applications of group theory, which serves as a vital tool in areas such as cryptography, number theory, physics, and computer science. Additionally, the course aims to foster students' ability to analyze and classify different types of groups, enabling them to recognize patterns and structures in diverse mathematical contexts.

Course Outcomes: Upon completion of this course, the learner will be able to					
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)			
CO1	Recall and define the fundamental concepts of group theory, including groups, subgroups, normal subgroups, and isomorphisms.	К1			
CO ₂	Apply basic group theory techniques and algorithms to solve routine problems and exercises.	K ₂			
CO ₃	Classify and analyze different types of groups, such as permutation groups	K ₂			

	and cyclic groups, based on their structures and properties.	
CO ₄	Compare and contrast different types of groups, such as permutation groups and cyclic groups, to identify their distinct characteristics and properties.	K ₃
CO₅	Formulate and justify conjectures related to group theory concepts, and develop logical arguments to support or refute them.	K4
CO ₆	Analyze the structure and properties of groups to classify them based on specific criteria.	K4
CO ₇	Evaluate and apply group theory concepts to solve complex mathematical problems and proofs.	К5

Course Contents Unit-I: Introduction to Group	
• Elementary Properties of Group.	
• Finite group, Order of a group, Order of an element.	
Unit-II: Subgroups and Normal Subgroups	
• Definition and example of a subgroup.	
• Lagrange's Theorem.	
• Definition of Centre of a Group and theorems related to it.	
• Definition and example of a Normal subgroup.	
• Theorems related to Normal Subgroup.	
Unit- III: Permutation Groups and Cyclic Group	
Definition and examples of Permutation Groups.	
Transposition and Cycle.	
• Properties of Cyclic Group.	
Classification of Subgroup of Cyclic Group.	
Unit- IV: Homomorphism of Groups	10
Definition and Examples	
Properties of Homomorphisms	
Kernal of Homomorphism.	
Unit- V: Isomorphism of Groups	
Definition and Examples	
• Cayley's Theorem	
Properties of Isomorphism.	
Automorphisms and Inner Automorphisms.	

Pedagogic Tools:

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Classroom discussions and debates
- Online resources

TEXT BOOKS:

- I.H.Sheth, 2nd edition, (2003), Abstract Algebra, Prentice/Hall of India Private Limited, New Delhi(Unit- 1 to5)
- 4. I. N. Herstein, (1975), Topics in Algebra, John Wiley & Sons, New York (Unit-1 to5)

REFERENCE BOOKS:

- 3. Thomas W. Judson, (2009), Abstract Algebra Theory and Applications, Stephen F. Austin State University.
- 4. Marlow Anderson & Todd Fel, (2005), A first course in Abstract Algebra (Rings, Groups & fields), Chrpman & Halilereivy,
- 5. Fraleigh J.B., (2003), A First Course in Abstract Algebra, Narosa Publishing, New Delhi.
- **6.** Joseph A. Gallian, ForthEdition (2011), Contemporary Abstract Algebra, Narosa Publishing House. (Unit- 1 to5)

Suggested reading / E-resources:

- MathWorld: Group Theory http://mathworld.wolfram.com/GroupTheory.html
- Abstract Algebra Online: Group Theory https://www.abstract-algebra.net/group-theory/
- Interactive Mathematics: Group Theory https://www.intmath.com/group-theory/
- PlanetMath: Group Theory https://planetmath.org/grouptheory
- Online Math Learning: Group Theory https://www.onlinemathlearning.com/group-theory.html
- Math Insight: Group Theory https://mathinsight.org/group_theory_introduction
- Brilliant: Cayley's Theorem https://brilliant.org/wiki/cayleys-theorem/

Suggested MOOCs:

- Coursera: Introduction to Group Theory by University of Colorado Boulder https://www.coursera.org/learn/introduction-to-group-theory
- edX: Introduction to Group Theory by University of Texas at Austin https://www.edx.org/professional-certificate/introduction-to-group-theory
- edX: Abstract Algebra: Groups, Rings, and Fields by University of Notre Dame https://www.edx.org/course/abstract-algebra-groups-rings-and-fields
- Coursera: The Beauty of Algebra by University of Colorado Boulder https://www.coursera.org/learn/algebra
- Coursera: Algebra for Cryptography by University of California, San Diego https://www.coursera.org/learn/algebra-cryptography

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Compor	nent	Content	Duration	Marks	Sub Total
Α	Test 1		1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test	2	Remaining 3 units	2 hours	15 (Set for 50)	
В	Assignn	nent			04	10
С	Class activity				06	
Gran				Grand Total	30	
Assignment •		Notes written by the learner on the different topics in the syllabus. Problem Solving.				
Class activity • •		Quiz / Surprise Quiz Seminar Situation based question etc.				

Note: Any other assessment tools or methods can be adopted as per requirement of the course

Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous) Affiliated to Saurashtra University, Rajkot

Core Course (Theory)			
For the students admitted from A.Y. 2021-2022 & onwards			
Offering Department: Mathematics Offered to: B.Sc. Mathematics			.Sc. Mathematics
Semester – V			
Course Code	Course Title		Course Credit and
			Hours
21UMTCC505	Core 14: Set theory	and Logic (Ap)	4 Credits - 1 hrs/wk
	(Self-Study C	ourse) (Ap)	(1 Theory)

Course Description: The course on "Set Theory and Logic" is designed to provide students in the B.Sc. Mathematics program with a comprehensive understanding of the fundamental concepts and principles of set theory and mathematical logic. Students will explore the properties and operations of sets, including unions, intersections, and complements, and learn how to apply these concepts in various mathematical contexts. The course also covers formal logic, including propositional and predicate logic, allowing students to develop the skills necessary to construct and analyze logical arguments. Through lectures, discussions, and problem-solving exercises, students will develop a solid foundation in set theory and logic, enabling them to apply these tools in advanced mathematical studies and other disciplines.

Course Purpose:

The purpose of the course on "Set Theory and Logic" is to introduce students in the B.Sc. Mathematics program to the fundamental principles and tools of set theory and mathematical logic. The course aims to develop students' understanding of sets, their properties, and operations, as well as the concepts of relations and functions. Additionally, the course focuses on formal logic, including propositional and predicate logic, to equip students with the ability to construct and analyze logical arguments. By studying set theory and logic, students will develop critical thinking skills, logical reasoning abilities, and a solid foundation for advanced mathematical topics and applications in various disciplines.

Course Outcomes: Upon completion of this course, the learner will be able to		
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)
CO1	Define and explain the basic concepts of set theory, such as sets, subsets, unions, intersections, and complements.	К1
CO ₂	Apply the rules of propositional and predicate logic to construct truth	K ₂

	tables and evaluate the validity of logical statements.	
CO ₃	Analyze and compare different types of sets, such as finite and infinite sets, countable and uncountable sets, and well-ordered sets.	K ₃
CO ₄	Evaluate the logical equivalences and implications between propositions using laws and rules of propositional and predicate logic.	К4
CO₅	Design and construct formal proofs using set theory techniques, such as direct proofs, proof by contradiction, and proof by mathematical induction.	К5
CO ₆	Evaluate and analyze the properties of functions and relations, including injectivity, surjectivity, and bijectivity, using set-theoretic concepts.	K ₆

Course Contents		
Unit-I: Sets and Basic operations on sets	3	
 Preliminaries: Basic set theory terminology and notation Venn Diagrams Classes of sets and power set Set operations Mathematical Induction Real Number System R Order and Inequalities, Absolute value, Distance, Intervals Bounded sets Integers Z, Greatest Common Divisor 		
Unit-II: Cardinal and Ordinal numbers		
 Denumerable and Countable sets Cardinal Numbers, Ordering of Cardinal Numbers Cardinal Arithmetic Well Ordered sets Ordinal Numbers, Structure of Ordinal Numbers 		
Unit- III: Functions and Relations	3	
 Product set, Relations-introduction Composition of relation, Types of relation Functions-Introduction Composition of functions One to one, onto and invertible function Mathematical functions- exponential, logarithmic function 		
Unit- IV: Special Functions and Algorithms		
 Operations of Collections of sets Indexed of Collections of sets Sequences, Summation symbol Fundamental Products Functions and Diagrams 		
- Special kinds of functions, Fundamental Factorization
- Choice function
- Algorithms and functions
- Complexity of Algorithms

Unit- V: Logic and Truth Tables

- Logic propositions: Truth and falsehood of propositions,
- Tautologies and Contradictions
- Logic operations
- Logical equivalence, Equivalences for negations, Equivalent forms of the implications
- Circuits and Logic

Pedagogic Tools:

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Interactive exercises.
- Online resources

TEXT BOOKS:

- 1. Robert R. Stoll (1963), Set Theory and Logic, Dover Publications, New York.
- 2. Karel Hrbacek and Thomas Jech (1999), Introduction to Set Theory, Marcel Dekker.

2

REFERENCE BOOKS:

- 1. Ernest Schimmerling (2011), A Course on Set Theory, Cambridge University Press.
- Seymour Lipschutz (1988), Set Theory and Related Topics, 2nd edition, Schaum's Outline Series, McGraw Hill

Suggested Reading/E-resources:

- Website: MathWorld Set Theory http://mathworld.wolfram.com/SetTheory.html
- Website: Stanford Encyclopedia of Philosophy Set Theory https://plato.stanford.edu/entries/set-theory/
- Website: Brilliant Set Theory Fundamentals https://brilliant.org/wiki/set-theory-fundamentals/

Suggested MOOCs:

- Coursera: "Introduction to Set Theory" by University of California, San Diego https://www.coursera.org/learn/intro-to-set-theory
- edX: "Introduction to Mathematical Thinking" by Stanford University https://www.edx.org/professional-certificate/introduction-to-mathematicalthinking
- Coursera: "Mathematical Thinking in Computer Science" by University of California, San Diego https://www.coursera.org/learn/what-is-a-proof
- "Introduction to Logic" by Stanford University

URL: https://www.edx.org/professional-certificate/introduction-to-logic

- Coursera: "Logic: Language and Information 1" by University of Melbourne https://www.coursera.org/learn/logic-language-information-1
- edX: "Introduction to Formal Logic" by University of California, Irvine https://www.edx.org/course/introduction-to-formal-logic
- Coursera: "Discrete Mathematics" by University of California, San Diego https://www.coursera.org/learn/discrete-mathematics.

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Compor	nent	Content	Duration	Marks	Sub Total
А	Test 1		1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test	2	Remaining 3 units	2 hours	15 (Set for 50)	
В	Assignm	nent			04	10
С	Class activ	vity			06	
					Grand Total	30
Assignment •		Notes written syllabus. Problem Solvi	by the learner of	n the different to	opics in the	
Class activity • • •		Quiz / Surpris Seminar Situation base	e Quiz d question etc.			

Core Course (Theory)					
Fo	r the students admitted fi	com A.Y. 2021-2022 &	z onwards		
Offering Depart	tment: Mathematics	Offered to: B	.Sc. Mathematics		
	Semester – VI				
Course Code	Course	Title	Course Credit and		
			Hours		
21UMTCC506	Core Elective 2: Adva	nced Mathematical	4 Credits - 4 hrs/wk		
	Analysis	s (Ad)	(4 Theory)		

Course Description:

The course on "Advanced Mathematical Analysis" is designed for B.Sc. (UG) students majoring in Mathematics. This course delves into the fundamental concepts and techniques of metric spaces, providing students with a deeper understanding of analysis. The course content includes the study of metric spaces, closed sets, countable sets, and the Cantor set. It also explores important topics such as compact sets and connected sets, which play a crucial role in mathematical analysis. Through rigorous mathematical reasoning and problem-solving, students will develop advanced analytical skills and gain proficiency in working with metric spaces. This course serves as a solid foundation for further studies in analysis and related fields.

Course Purpose:

The course on **"Advanced Mathematical Analysis"** aims to provide a comprehensive understanding of the key concepts and techniques in metric spaces to B.Sc. (UG) students majoring in Mathematics. The purpose of this course is to equip students with advanced analytical skills and a solid foundation in mathematical analysis. By studying metric spaces, closed sets, countable sets, the Cantor set, compact sets, and connected sets, students will develop a deep appreciation for the intricacies of mathematical analysis. This course fosters the ability to rigorously reason and solve complex problems in the context of metric spaces, preparing students for further studies in advanced mathematics and related disciplines.

Course Outcomes: Upon completion of this course, the learner will be able to					
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)			
CO1	Recall and define the key concepts of metric spaces, closed sets, countable sets, Cantor set, compact sets, and connected sets.	К1			
CO ₂	Identify examples and properties of metric spaces, closed sets, countable sets, Cantor set, compact sets, and connected sets.	К1			

Course Ou	Course Outcomes: Upon completion of this course, the learner will be able to				
CO₃	Apply the definitions and properties of open sets, closed sets, limit points, and boundaries to solve problems in metric spaces.	К2			
CO ₄	Analyze and compare the concepts of open sets, closed sets, and neighborhoods in metric spaces.	К3			
CO₅	Evaluate and prove theorems related to compact sets, connected sets, and their properties.	К4			
CO ₆	Formulate and construct proofs for advanced theorems such as the Heine- Borel Theorem, Bolzano-Weierstrass Theorem, and Nested Interval Theorem.	К5			
CO7	Synthesize and apply the concepts of metric spaces, closed sets, countable sets, Cantor set, compact sets, and connected sets to solve complex mathematical problems and proofs.	К6			
CO8	Evaluate and critique mathematical arguments, identifying strengths and weaknesses in proofs related to metric spaces and their properties.	К6			

Course Contents	Hours		
Unit-I: Metric space			
 Metric Space – definition and problems based on it Usual Metric Space and Discrete Metric Space Problems based on Discrete Metric Space Some important results based on Discrete Metric Space. Neighbourhood, Interior point, Open set Problems based on Open set and Neighbourhood Hausdorff Principle Open sets in metric space Neighbourhood as an Open set Open interval as an open set 			
Unit-II: Closed Set			
 Limit point, Closed set, Derived set, Dense set, Nowhere Dense Problems based on Closed set, derived set Results based on Closed set Boundary points of a set and problems based on it Results based on closure of a set 			
Unit- III: Countable set and Cantor set			
 Fundamentals of one-one function and onto function Definition of Similar sets Problems based on similarity of sets Countable sets and problems based on Countable set 			

•	• Definition of the Cantor set						
•	Some important properties of the Cantor set						
•	Representation of Real number or m- based expression						
Unit- I	V: Compact set	10					
•	Separated set in a metric space						
•	Difference between disjoint & Separated set						
•	Definition and examples of Cover of a set						
•	Definition and examples of Sub cover, Open cover						
•	Compact sets						
•	Some important results of Compact set						
•	Heine Boral Theorem						
•	Problems based on these concepts						
Unit- V	7: Connected set	9					
•	Connected set						
•	Some important results based on Connected set						
•	Boltzano weirstrass theorem						
•	Nested Interval Theorem						
•	Totally Bounded sets						
•	Sequential Compactness						
•	Results based on Sequential Compactness						
•	Problems based on these concepts.						

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Classroom discussions and debates
- Online resources

TEXT BOOKS: -

1. J. N. Sharma and A. R. Vashishtha, (2017), Mathematical Analysis - I, Krishna Prakashan Mandir, MEERUT(U.P.)

REFERENCE BOOKS:-

- 1. S. C. Malik & Savita Arora, (2009), Mathematical Analysis, New Age Int. Pvt. Ltd .
- 2. Shantinarayana, 2003), A first course of Mathematical Analysis, S. Chand & sons.
- 3. Tom.M.Apostol, (1985), Mathematical Analysis, Narosa Publishing House.
- **4.** R. R. Goldberg, (1970), Methods of Real Analysis, Oxford & IBH Publishing Co. Pvt. Ltd.
- 5. H. L. Royden, (2015), Real Analysis, Prentice Hall of India Pvt Ltd. New Delhi

Suggested reading / E-resources:

- Math Insight Metric Spaces: https://mathinsight.org/metric_spaces_introduction
- Khan Academy Metric Spaces and Topology: https://www.khanacademy.org/math/differential-geometry/metric spaces
- Brilliant Metric Spaces: https://brilliant.org/wiki/metric-spaces

- Interactive Mathematics Metric Spaces: https://www.intmath.com/counting-probability-statistics/2-metric-spaces.php
- University of Minnesota Introduction to Metric Spaces: http://www-users.math.umn.edu/~garrett/m/metric spaces
- OpenLearn Metric Spaces:
- https://www.open.edu/openlearn/science-maths-technology/metric-spaces/content-section-0
- MathOnline Metric Spaces: https://mathonline.wikidot.com/metric-spaces

Suggested MOOCs:

- Coursera Real Analysis: Measure Theory, Integration, and Hilbert Spaces https://www.coursera.org/learn/real-analysis
- edX Real Analysis: Foundations and Functions https://www.edx.org/professional-certificate/dartmouthx-real-analysisfoundations-and-functions
- Udemy Advanced Real Analysis https://www.udemy.com/course/advanced-real-analysis
- MIT OpenCourseWare Real Analysis https://ocw.mit.edu/courses/mathematics/18-100-real-analysis-fall-2006
- FutureLearn Advanced Mathematics: Linear Algebra and Analysis https://www.futurelearn.com/courses/advanced-mathematics-linear-algebraanalysis
- NPTEL Advanced Calculus and Real Analysis https://nptel.ac.in/courses/111/102/111102039
- Khan Academy Multivariable Calculus https://www.khanacademy.org/math/multivariable-calculus

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration	Marks	Sub Total
Α	Test 1	1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test 2	Remaining 3 units	2 hours	15 (Set for 70)	
В	Assignment			04	10
С	Class activity			06	
Grand Total			30		
Assignment •		Notes written syllabus.	by the learner of	n the different to	opics in the

	•	Problem Solving.	
Class activity	•	Quiz / Surprise Quiz	
	•	Seminar	
	•	Situation based question etc.	

Core Course (Theory)					
Fo	r the students admitted fi	rom A.Y. 2021-2022 &	z onwards		
Offering Depart	tment: Mathematics	Offered to: B	.Sc. Mathematics		
	Semester – VI				
Course Code	Course Title		Course Credit and		
21UMTCC506	Core Elective 2:	Topology(Ad)	4 Credits - 4 hrs/wk		
			(4 Theory)		

Course Description:

"Topology" is a course designed for B.Sc. (UG) program students majoring in Mathematics. This course provides a comprehensive introduction to the fundamental concepts of topology. Students will explore the theory of topological spaces, including their properties and various types of topologies. The course covers topics such as the Subspace Topology, Continuity, T1 and T2 spaces, and Regular and Normal spaces. Through lectures, problem-solving exercises, and examples, students will develop a solid understanding of the foundational concepts and techniques in topology. This course serves as a basis for further studies in advanced mathematics and lays the groundwork for exploring the rich field of topology.

Course Purpose:

The purpose of the course "Topology" is to provide B.Sc. (UG) program students majoring in Mathematics with a solid foundation in the fundamental concepts of topology. The course aims to familiarize students with the abstract study of spaces and their properties, focusing on topological spaces, the Subspace Topology, Continuity, T1 and T2 spaces, Regular spaces, and Normal spaces. By the end of the course, students will have developed a deep understanding of the basic principles and techniques of topology, enabling them to analyze and describe the structure of various mathematical spaces. This course prepares students for further advanced studies in topology and related fields, equipping them with the necessary tools to tackle complex mathematical problems and theories.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)		
CO1	Identify and define the basic concepts of topology, such as topological spaces and the Subspace Topology.	К1		
CO ₂	Apply the properties of continuous functions in various topological spaces.	К2		
CO₃	Recognize and distinguish between different types of spaces, such as T1 spaces and Hausdorff spaces.	К2		
CO ₄	Analyze and determine whether a given set satisfies the conditions of a basis for a given topology.	К3		

CO ₅	Evaluate the continuity of functions and determine if they are continuous or discontinuous in specific topological spaces.	К3
CO ₆	Construct examples and counterexamples to illustrate the concepts of regular spaces and normal spaces.	К4
CO ₇	Evaluate and apply Urysohn's Lemma and Tietze extension theorem to prove results in the context of topology. (K5)	К5
CO ₈	Synthesize and create proofs for theorems related to the properties of topological spaces, such as T1 and T2 spaces.	К6

Course Contents	Hours	
Unit-I: Topological spaces		
Topological spacesBasis for a Topology		
Unit-II: The Subspace Topology	10	
The Subspace TopologyOrder Topology		
Unit- III: Continuity		
 Continuous functions Metric Topology 		
Unit- IV: T ₁ and T ₂ spaces	10	
 T₁- spaces Hausdorff spaces 		
Unit- V: Regular and Normal Spaces		
 Regular spaces and Normal spaces Urysohn's Lemma and Tietze extension theorem. 		

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Classroom discussions and debates
- Online resources

TEXT BOOKS: -

2. Munkres J., Topology: A first course, Prentice-Hall of India Pvt. Ltd, New Delhi.

REFERENCE BOOKS:-

- 6. Simmons G. F., Introduction to Topology and Modern Analysis, McGraw Hill Company, Tokyo.
- 7. Willards S., General Topology, Addition-Wesley, Reading, 1970.

Suggested reading / E-resources:

- Topology Atlas http://at.yorku.ca/topology/
- Interactive Topology by Jyväskylä University http://www.bloomtopology.org/

- Wolfram MathWorld: Topology http://mathworld.wolfram.com/topics/Topology.html
- Brilliant: Topology Fundamentals https://brilliant.org/wiki/topology-fundamentals/
- Khan Academy: Introduction to Topology https://www.khanacademy.org/math/differential-geometry/introduction-to-topology
- OpenLearn: Introduction to Topology https://www.open.edu/openlearn/sciencemaths-technology/introduction-topology/content-section-0
- MIT OpenCourseWare: Introduction to Topology https://ocw.mit.edu/courses/mathematics/18-901-introduction-to-topology-fall-2004/
- These websites provide a variety of resources, including interactive materials, tutorials, articles, and course materials, to help students learn and explore the concepts of topology.

Suggested MOOCs:

- Coursera: Introduction to Topology https://www.coursera.org/learn/introduction-to-topology
- edX: Introduction to Topology https://www.edx.org/course/introduction-to-topology
- Udemy: Topology Course Introduction to Topology https://www.udemy.com/course/topology-course/
- MIT OpenCourseWare: Introduction to Topology https://ocw.mit.edu/courses/mathematics/18-901-introduction-to-topology-fall-2004/
- FutureLearn: An Introduction to Topology https://www.futurelearn.com/courses/introduction-to-topology
- Udacity: Intro to Topology https://www.udacity.com/course/intro-to-topology-st101
- Saylor Academy: MA211: Introduction to Topology https://learn.saylor.org/course/ma211

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration	Marks	Sub Total
Α	Test 1	1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test 2	Remaining 3 units	2 hours	15 (Set for 70)	
В	Assignment			04	10
С	Class activity			06	
				Grand Total	30
Assignment • Notes written by the learner on the different topics in the					

		syllabus.
	•	Problem Solving.
Class activity	•	Quiz / Surprise Quiz
	• Seminar	
	•	Situation based question etc.

			J	
Core Course (Theory)				
Fo	r the students admitted fi	com A.Y. 2021-2022 &	k onwards	
Offering Depart	tment: Mathematics	Offered to: B	.Sc. Mathematics	
	Sem	ester – V		
Course Code	Course	Title	Course Credit and	
			Hours	
21UMTCC506	Core Elective 2: Fu	zzy Mathematics	4 Credits - 4 hrs/wk	
			(4 Theory)	

Course Description:

The course "Introduction to Fuzzy Mathematics" provides students with a comprehensive understanding of the principles and applications of fuzzy mathematics. Fuzzy mathematics deals with handling uncertainty and imprecision in mathematical models and decision-making processes. The course covers the theoretical foundations of fuzzy sets, fuzzy logic, and fuzzy reasoning, along with practical applications in diverse fields. Students will learn to analyze and solve problems using fuzzy sets, explore fuzzy logic systems, and gain insights into fuzzy optimization and decision-making techniques. This course equips students with the necessary knowledge and skills to effectively apply fuzzy mathematics in real-world scenarios, enhancing their problem-solving abilities and mathematical reasoning.

Course Purpose:

The course "Introduction to Fuzzy Mathematics" aims to provide students with a solid foundation in the theory and applications of fuzzy mathematics. The purpose of this course is to familiarize students with the concepts and principles of fuzzy sets, fuzzy logic, and fuzzy reasoning, and their relevance in handling uncertainty and imprecision in mathematical models and decision-making processes. By the end of the course, students will be able to understand and apply fuzzy mathematics to solve complex problems, analyze data with uncertainty, and make informed decisions in various domains. This course also aims to enhance students' critical thinking, problem-solving, and analytical skills, preparing them for advanced studies or professional careers in mathematics or related fields.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	D. CO Statement E t L			
CO1	Define the concept of a fuzzy set and identify its key components.	K1		
CO ₂	Recognize and classify fuzzy relations based on their properties.	К2		
CO ₃	Apply basic operations on fuzzy sets, such as union, intersection, and complement.	К2		

CO ₄	Evaluate the degree of membership of an element in a given fuzzy set using appropriate membership functions.	КЗ
CO₅	Analyze and interpret fuzzy relations using composition and aggregation operations.	КЗ
CO ₆	Develop fuzzy rule-based systems to model complex real-world problems and make decisions under uncertainty.	К4
CO ₇	Critically analyze and compare different defuzzification methods for obtaining crisp outputs from fuzzy sets.	К4
CO ₈	Evaluate the applicability and limitations of fuzzy mathematics in various domains, such as control systems, pattern recognition, and decision analysis.	К5

Course Contents	Hours
Unit-I: Introduction to Fuzzy Sets	9
 Introduction to fuzzy sets Membership functions and membership grades Operations on fuzzy sets Fuzzy relations and composition Fuzzy set-based reasoning 	
Unit-II: Fuzzy Logic	10
 Fuzzy logic and truth values Fuzzy propositions and connectives Fuzzy implications and inference rules Fuzzy rule-based systems Fuzzy control systems 	
Unit- III: Fuzzy Mathematics and Applications	10
 Fuzzy numbers and arithmetic operations Fuzzy relations and their properties Fuzzy optimization Fuzzy decision-making Fuzzy clustering 	
Unit- IV: Fuzzy Systems and Approximation	10
 Fuzzy systems and their components Fuzzy modeling and identification Fuzzy rule interpolation and extrapolation Approximation using fuzzy sets Fuzzy regression analysis 	
Unit- V: Advanced Topics in Fuzzy Mathematics	9
 Fuzzy measures and integrals Fuzzy graph theory Fuzzy neural networks Fuzzy time series analysis Fuzzy image processing 	

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Classroom discussions and debates
- Online resources

TEXT BOOKS: -

- 1. "Fuzzy Sets and Fuzzy Logic: Theory and Applications" by George J. Klir and Bo Yuan
- 2. "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems" by Guanrong Chen and Trung Tat Pham

REFERENCE BOOKS:-

- 1. "Fuzzy Mathematics: An Introduction for Engineers and Scientists" by John N. Mordeson and Premchand S. Nair
- 2. "Fuzzy Logic with Engineering Applications" by Timothy J. Ross
- 3. "Fuzzy Sets, Uncertainty and Information" by George J. Klir and Bo Yuan

Suggested reading / E-resources:

- Fuzzy Sets and Systems Journal https://www.journals.elsevier.com/fuzzy-sets-and-systems
- Fuzzy Math http://www.fuzzymath.com]
- Fuzzy Logic Toolbox Documentation https://www.mathworks.com/help/fuzzy
- Fuzzy Systems and Fuzzy Logic https://www.tutorialspoint.com/fuzzy_systems/index.htm
- Fuzzy Logic Tutorial http://www.fuzzy-logic.com
- Fuzzy Logic Control https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/cs11/report.html
- Fuzzy Mathematics https://sites.google.com/a/umn.edu/fuzzy-mathematics

Suggested MOOCs:

- "Introduction to Fuzzy Logic and Fuzzy Sets" Udemy https://www.udemy.com/course/introduction-to-fuzzy-logic-and-fuzzy-sets/
- "Fuzzy Logic and Fuzzy Sets: Theory and Applications" edX https://www.edx.org/course/fuzzy-logic-and-fuzzy-sets-theory-and-applications
- "Introduction to Fuzzy Sets and Fuzzy Logic" Coursera https://www.coursera.org/learn/fuzzy-sets-fuzzy-logic
- "Fuzzy Logic for Beginners" Udemy https://www.udemy.com/course/fuzzy-logic-for-beginners/
- "Fuzzy Systems and Control" Coursera https://www.coursera.org/learn/fuzzy-systems-control
- "Applied Fuzzy Logic for Decision Making" FutureLearn https://www.futurelearn.com/courses/applied-fuzzy-logic

• "Fuzzy Logic with Engineering Applications" - Udemy https://www.udemy.com/course/fuzzy-logic-with-engineering-applications/

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Compor	nent	Content	Duration	Marks	Sub Total
A	Test	1	1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test	2	Remaining 3 units	2 hours	15 (Set for 70)	
В	Assignn	nent			04	10
С	Class activity				06	
					Grand Total	30
Assignment •		Notes written syllabus. Problem Solvi	by the learner on ng.	n the different to	opics in the	
Class activity • • •		Quiz / Surpris Seminar Situation base	e Quiz d question etc.			

	Core Course (Practical)					
	For the students admit	tted from A.Y. 2021-2022 & o	nwards			
Offering Departr	ment: Mathematics	Offered to: B.Sc .	. Mathematics			
	Semester – V					
Course Code	Co	urse Title	Course Credit and Hours			
21UMTCC507	Core	6 Credits- 12 hrs/wk				
	Practical on Numerical Analysis and Problem					
	solving using co	mputer programming				

Course Description:

The course "Practical on Numerical Analysis and Problem Solving using Computer Programming" is designed for undergraduate students in mathematics who want to learn how to apply numerical methods to solve mathematical problems and to learn computer programming. In this course, students will learn the fundamental numerical techniques and algorithms required to solve problems that are difficult or impossible to solve analytically. The course is structured to provide students with hands-on experience in solving problems using computer programming.

This course introduces students to the fundamentals of the C programming language and its applications in problem-solving. Topics covered include C language basics, operators, decision-making and branching, looping mechanisms, user-defined functions, data types, preprocessor directives, introduction to arrays, and practical implementation of these concepts through a series of programming exercises. By the end of the course, students will gain proficiency in using C language constructs to solve mathematical problems efficiently.

Course Purpose:

The purpose of the course of Practical on Numerical Analysis for a UG program in Mathematics is to provide students with a comprehensive understanding of numerical methods and their applications in solving mathematical problems. Through this course, students will learn to analyze and solve mathematical problems numerically, gain proficiency in various numerical methods, such as interpolation, numerical integration, and numerical solution of differential equations, The purpose of the course of Problem Solving using Computer Programming is to equip students with the skills and tools necessary to solve mathematical problems using a computer program. Through this course, students will learn the basics of programming, gain proficiency in a high-level programming language such as C language develop the ability to apply programming techniques to solve mathematical problems. Additionally, students will learn how to write efficient and well-structured programs. The course will also help students develop critical thinking and problem-solving skills, which are essential in mathematics and other STEM fields..

Course Outcomes: Upon completion of this course, the learner will be able to					
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)			
CO1	Develop proficiency in implementing numerical algorithms to solve mathematical problems using computer programming.	КЗ			
CO ₂	Analyze and select appropriate numerical methods for solving mathematical problems	К4			
CO ₃	Evaluate the accuracy and efficiency of numerical methods for solving mathematical problems and identify their limitations.	К5			
CO ₄	Apply knowledge of numerical methods to solve practical mathematical problems.	КЗ, К4			
CO ₅	Apply problem-solving strategies to analyze and solve mathematical problems using computer programming.	КЗ, К4			
CO ₆	Create algorithms to solve mathematical problems using computer programming.	К5			
CO ₇	Evaluate and choose appropriate numerical methods to solve mathematical problems.	К6			
CO ₈	Analyze and optimize programs to solve mathematical problems efficiently.	К4, Кб			
CO ₉	Evaluate the accuracy of numerical methods and analyze the impact of errors on solutions.	К6			
CO ₁₀	Communicate mathematical ideas and solutions effectively using computer programming.	К6			

List	List of Practical				
Sr	Experiments				
•					
1	(i) Gauss elimination method.	8			
	(ii) Gauss Jordan method.				
2	LU decomposition method. 4				
3	Crout's method. 4				
4	(i) Jacobi's method.	8			
	(ii) Gauss Seidel method.				
5	(i) Fitting a Straight line.	8			
	(ii) Fitting an exponential curve $y = e^{ax}$.				
6	(i) Fitting a Parabola.	8			

	(ii) Fitting the curve of the type $y = ax^b$.	
7	Finite differences.	4
8	Gregory- Newton forward interpolation formula.	4
9	Gregory- Newton backward interpolation formula	4
10	Equidistance terms with one or more missing values	4
11	(i) Write a program to find area of a circle when radius is given.	8
	(ii) Write a program to calculate the area of a triangle when base and	
	height of the triangle are given.	
	(iii) write a program to find value of one number raised to another number.	
12	(i) Write a program to determine whether given number is an even or	8
	odd number.	
	(ii) Write a program to find largest of four given numbers.	
13	(i) Write program to find net salary when basic salary and other require	ed 8
10	details are given.	
	(ii) Write a program to solve the quadratic equation	
14	(i) Write a program to reverse an integer with FIVE digits.	12
	(ii) Write a program to verify a number whether it is palindrome or not.	
	(iii) Write a program to find sum of the digits an integer with FIVE digit	S.
	(iv) Write a program to print Armstrong numbers between 1 to 999.	
15	(i) Write a program to generate arithmetic and geometric progressions.	8
	(11) Write a program to find nPr and nCr for given value of +ve integers and r.	n
16	(i) Write a program to find compound interest for given years.	8
	(ii) Write a program to find number of odd number and even numbers.	
17	(i) Write a program to solve the equation by N-R method.	8
	(ii) Write a program to find factorial of a given number.	
18	(i) Write a program using UDF with two arguments and a return value.	8
	(ii) Write a program that utilizes a UDF two find prime numbers betwee	en
	two integers entered through key-board.	
19	(i) Write a program to find value determinant of a 2X2 and a 3X3	8
	(ii) Write a program to find inverse of a 2X2 matrix	
20	(i) Write a program to find diagonal of a 2X2 matrix entered through	Q
20	kev-board.	0
	(ii) Write a program to find the sum, deference, and multiplication of tw	VO
	3X3 matrices entered through key-board.	

- Chalk and Board
- Power point presentation
- Handouts
- Computer
- Video

Text books:

M. K. Jain, S.R.K. Iyengar and R.K. Jain, (2022), Numerical Methods, 8th Edition, New Age International Publishers, New Delhi.

- Numerical Methods with C++ Programming, (2009), Nita H. Shah, PHI Learning Pvt. Ltd.
- Yashvant Kanetker, (2016), LET US C, 5th Edition, BPB Publications, New Delhi.
- E. Balagurusamy, (2017), Programming in ANSI C, McGrew Hill Education, Seventh Edition.

Reference books:

- S. D. Conte and Carl De Boor, (2018), Elementary Numerical Analysis, 3rd Edition, McGraw-Hill, New York.
- S.S. Sastry, (2012), Introductory Methods of Numerical Analysis, 5th Edition, PHI Learning Private Limited, New Delhi.
- Brian W. Karnighan and Dennis M. Ritchie, (1988), The ANSI C Programming Language, Prentice Hall.
- V. Rajaraman, (1994), Computer Programming in C, Prentice Hall of India.

Suggested reading / E-resources:

- NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/
- Wolfram MathWorld: https://mathworld.wolfram.com/
- Numerical Recipes: https://www.nr.com/
- The Netlib Repository: https://www.netlib.org/
- Coursera: https://www.coursera.org/
- Khan Academy: https://www.khanacademy.org/
- Learn-C.org: https://www.learn-c.org/
- Programiz: https://www.programiz.com/c-programming
- Tutorials point: https://www.tutorialspoint.com/cprogramming/index.htm
- C Programming.com: https://www.cprogramming.com/
- C for beginners: https://www.c-for-beginners.com/

Suggested MOOCs:

- Numerical Methods: https://www.edx.org/course/numerical-methods
- Introduction to Numerical Methods: https://www.futurelearn.com/courses/numerical-methods-introduction
- edX: C Programming: Getting Started –

URL: https://www.edx.org/course/c-programming-getting-started

- Coursera: Introduction to Programming in C Specialization URL: https://www.coursera.org/specializations/c-programming
- Udemy: C Programming for Beginners URL: https://www.udemy.com/course/c-programming-for-beginners-/
- Codecademy: Learn C URL: https://www.codecademy.com/learn/learn-c

Methods of Assessment & Tools:

Components of CIA: 40 marks

Sr. No.	Component	Content	Duration	Marks	Sub Total
А	Test 1	1-10 Experiments	$1\frac{1}{2}$ hours	15	30
	Test 2	11-20 Experiments	$1\frac{1}{2}$ hours	15	
В	Attendance and Regularity			5	10
С	Class Activities			5	
				Grand Total	40
Class activity		QuizSituatioHandbox	n based question ook		

Core Course (Theory)					
Fo	For the students admitted from A.Y. 2021-2022 & onwards				
Offering Depart	Offering Department: Mathematics Offered to: B.Sc. Mathematics				
Semester – VI					
Course Code	Course Title		Course Credit and		
	Hours				
21UMTCC601	Core 15: Complex Analysis(Ap)		4 Credits - 4 hrs/wk		
			(4 Theory)		

Course Description:

The course on "Complex Analysis" in the B.Sc. (UG) program majoring in Mathematics provides students with a comprehensive understanding of functions of complex variables and their properties. Students will explore topics such as analytic functions, harmonic functions, and entire functions. The course covers complex integration, including the Cauchy-Riemann conditions, Cauchy's integral formula, and the fundamental theorem of algebra. Students will learn about mapping and power series, including the expansion of complex functions in Taylor's and Laurent's series. The course also introduces singular points, residues, and poles of complex functions, and applies the residue theorem to evaluate improper real integrals. Through lectures, examples, and problem-solving exercises, students will develop a strong foundation in complex analysis, enabling them to apply these concepts in advanced mathematical studies and other related disciplines.

Course Purpose:

The purpose of the "Complex Analysis" course in the B.Sc. (UG) program majoring in Mathematics is to provide students with a deep understanding of complex variables and their functions. The course aims to develop students' knowledge and skills in analyzing and manipulating complex functions. Students will learn about the properties of analytic functions, including limits, continuity, differentiability, and harmonic functions. The course also focuses on complex integration, covering topics such as the Cauchy-Riemann conditions, Cauchy's integral formula, and the fundamental theorem of algebra. Additionally, the course aims to enhance students' problem-solving abilities through the study of mappings, power series, residues, and poles. By the end of the course, students will have a solid foundation in complex analysis, enabling them to apply these concepts to further studies in mathematics and related fields.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)		
CO1	Recall and define the concepts of analytic functions, harmonic functions, entire functions, and their properties.	K ₁		

CO ₂	Apply the Cauchy-Riemann conditions in Cartesian and polar forms to determine the differentiability of complex function.	K ₂
CO ₃	Memorize and identify the fundamental theorems of algebra, including Cauchy's integral formula and the maximum modulus theorem.	K ₁
CO4	Analyze and explain the significance of contour integration and its applications in complex analysis, including the evaluation of definite integrals.	K ₃
CO₅	Compare and contrast different types of mappings, such as Mobius mapping, linear functions, and bilinear mapping, and discuss their properties.	K4
CO ₆	Evaluate and apply theorems and techniques, such as the residue theorem and expansion of complex functions in Taylor's and Laurent's series, to solve complex analysis problems.	K5
CO7	Create and construct arguments to prove results, such as Cauchy's inequality, Liouville's theorem, and Morera's theorem, related to analytic functions and their properties	K ₆
CO ₈	Synthesize and integrate knowledge from complex analysis to solve complex problems, including the evaluation of improper real integrals using the residue theorem.	K ₆

Course	Contents	Hours
Unit-I:	Analytic Functions	9
•	Introduction to functions of complex variables	
•	Limit, continuity and differentiability of complex functions	
•	Harmonic functions	
•	Entire functions	
•	Analytic functions	
Unit-II	: : Complex integration	10
•	C-R conditions in Cartesian form	
•	C-R conditions in polar form	
•	Definite integrals	
•	Contours	
•	Statement of Cauchy-Goursat theorem and examples	
•	Cauchy's integral formula	
Unit- I	II: Fundamental theorem of Algebra	10
•	Higher order derivative of analytic function	
•	Morera's theorem	
•	Cauchy's inequality	
•	Liouville's theorem	
•	Fundamental theorem of algebra	
•	Maximum modulus theorem	

Unit- IV: Mapping and Power series	10
Elementary functions	
Mapping by elementary functions	
Mobius mapping	
• Linear function	
Bilinear mapping	
• Discussion on different types of mapping	
• Complex sequence	
• Complex series and power series	
• Expansion of a complex function in Taylor's series and Laurent's series	
Unit- V: Residues and Poles	9
Introduction to singular points	
Isolated singular points	
• Zeros of complex functions	
Poles and residues of complex function	
• Cauchy's residue theorem	
• Evaluation of improper real integrals by residue theorem	
• Evaluation of definite integral of trigonometric functions by residue theorem	

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Classroom discussions and debates
- Online resources

TEXT BOOKS: -

1. R. V. Churchill and J. W. Brown (2003), Complex variables and applications, 7th Edition, McGraw-Hill.

REFERENCE BOOKS:-

- 1 J. M. Howie (2004), Complex Analysis, Springer-Verlag.
- **2** M. J. Ablowitz and A. S. Fokas (1998), Complex Variables-Introduction and Applications, (Indian edition) Cambridge University Press.

Suggested reading / E-resources:

- Math Insight URL: https://mathinsight.org/
- Khan Academy URL: https://www.khanacademy.org/
- Wolfram MathWorld URL: http://mathworld.wolfram.com/
- MIT OpenCourseWare URL: https://ocw.mit.edu/
- Math Stack Exchange URL: https://math.stackexchange.com/
- Complex Analysis by Dr. T.E. Venkata Balaji URL: https://www.nptel.ac.in/courses/111/106/111106100/
- Complex Analysis Resources by Dr. S. Arumugam URL: https://www.cmi.ac.in/~arumugam/courses/ca2020/

Suggested MOOCs:

- "Complex Analysis" by Coursera URL: https://www.coursera.org/learn/complex-analysis
- "Introduction to Complex Analysis" by edX URL: https://www.edx.org/course/introduction-to-complex-analysis
- "Complex Analysis" by NPTEL URL: https://onlinecourses.nptel.ac.in/noc21_ma12
- "Complex Analysis" by Swayam URL: https://swayam.gov.in/nd2_aic20_ma08/
- "Analytic Combinatorics: Complex Analysis for Discrete Structures" by Coursera URL: https://www.coursera.org/learn/analytic-combinatorics
- "Complex Analysis with Physical Applications" by edX URL:https://www.edx.org/professional-certificate/harvardx-complex-analysis-withphysical-applications

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Compor	nent	Content	Duration	Marks	Sub Total
Α	Test	1	1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test	2	Remaining 3 units	2 hours	15 (Set for 70)	
В	Assignm	nent			04	10
С	Class activity				06	
					Grand Total	30
Assignn	 Assignment Notes written by the learner on the different topics in syllabus. Problem Solving. 			opics in the		
Class ac	Class activity Quiz / Surprise Quiz Seminar Situation based question etc. 					

Core Course (Theory)					
Fo	For the students admitted from A.Y. 2021-2022 & onwards				
Offering Depart	Offering Department: Mathematics Offered to: B.Sc. Mathematics				
Semester – VI					
Course Code	Course	Title	Course Credit and		
	Hours				
21UMTCC602	Core Practical 16:		4 Credits - 4 hrs/wk		
	Advanced Topics in Nu	merical Analysis(Ad)	(4 Theory)		

Course Description:

This course is designed to provide students with advanced knowledge and techniques in numerical analysis. The course will cover advanced topics in numerical differentiation, numerical integration, numerical solution of ordinary differential equations, interpolation with unequal intervals, and central difference interpolation formulae. Students will be introduced to theoretical concepts and their practical applications. The course will focus on developing problem-solving skills and analytical thinking.

Course Purpose:

The purpose of the course on Advanced Numerical Analysis for an undergraduate program in Mathematics is to equip students with advanced knowledge and skills in numerical methods and their applications. The course aims to provide students with a deeper understanding of numerical algorithms for solving various mathematical problems, such as interpolation, numerical differentiation, integration, and the numerical solution of ordinary differential equations. Through this course, students will be able to apply numerical analysis techniques to solve problems in various areas. The course also aims to develop students' critical thinking, problem-solving, and programming skills by providing practical applications of numerical methods..

Course O	Course Outcomes: Upon completion of this course, the learner will be able to					
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)				
CO1	Demonstrate an understanding of interpolation formulae, including Gauss's forward and backward interpolation formulae, Sterling's formula, Bessel's formula, and Laplace-Everett's interpolation formula, and apply these formulae to interpolate data using central difference methods	K ₂ , K ₃				

CO ₂	Analyze and solve interpolation problems with unequal intervals using divided differences, properties of divided differences, Newton's divided difference formula, Lagrange's interpolation formula, and Lagrange's inverse interpolation formul	K ₂ , K ₃
CO ₃	Apply numerical differentiation methods, including Gregory-Newton's forward and backward difference formulae, Sterling's formula, and central difference methods, to estimate derivatives of functions at given points.	K ₂ , K ₃
CO ₄	Apply numerical integration techniques, including the trapezoidal rule and Simpson's rule, to estimate integrals of functions over given intervals.	K ₂ , K ₃
CO₅	Analyze and solve ordinary differential equations using Taylor's series method, Picard's method, Euler's method, Runge's method, and Runge-Kutta methods of various orders.	K ₂ , K ₃
CO ₆	Evaluate the accuracy and efficiency of numerical methods for interpolation, differentiation, integration, and solving ordinary differential equations, and justify the appropriateness of the methods for specific problems.	K4, K5

Course Contents	
Unit-I: Unit 1: Central difference interpolation formulae.	9
• Introduction.	
Gauss's forward interpolation formula.	
• Gauss's backward interpolation formula.	
• Sterling's formula.	
• Bessel's formula.	
• Laplace- Everett's interpolation formula.	
Unit-II: Interpolation with unequal intervals.	10
• Introduction.	
• Divided differences.	
• Properties of divided difference.	
• Relation between divided differences and forward difference.	
• Newton's divided difference formula.	
• Lagrange's interpolation formula.	
• Inverse interpolation.	
• Lagrange's inverse interpolation formula.	
Unit- III: Numerical Differentiation.	10
• Introduction.	
Numerical Differentiation.	
• Derivatives using Gregory-Newton's forward difference formula.	
• Derivatives using Gregory-Newton's backward difference formula.	
• Derivative using Sterling's formula.	
Unit- IV: Numerical Integration.	10

- Introduction.
- Numerical Integration.
- General quadrature formula.
- Trapezoidal rule.
- Simpson's 1/3 rule.
- Simpson's 3/8 rule.

Unit- V: Numerical solution of ordinary differential equations.

- Introduction.
- Solution by Taylor's series method.
- Picard's method.
- Euler's method.
- Runge's method
- Runge-Kutta methods and its higher order.

Pedagogic Tools:

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Classroom discussions and debates
- Online resources

TEXT BOOKS: -

1. Numerical Methods by Dr. V. N. Vedamurthy & Dr. N. Ch. S. N. Iyengar, (1998) Vikas Publishing house.

9

2. Numerical Methods with C++ Programming, (2009), Nita H. Shah, PHI Learning Pvt. Ltd.

REFERENCE BOOKS:-

- 1. M. K. Jain, S. R. K.Iyengar, R. K. Jain (1996) Numerical method, Problems & Solutions, by, New Age International Pvt. Ltd
- **2.** J. B.Scarforough,(1966) Numerical Mathematical Analysis, Oxford & IBH Publi. Co. Pvt. Ltd.

Suggested reading / E-resources:

- MathWorks: https://www.mathworks.com/
- NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/
- Wolfram MathWorld: https://mathworld.wolfram.com/
- Numerical Recipes: https://www.nr.com/
- The Netlib Repository: https://www.netlib.org/
- GNU Scientific Library: https://www.gnu.org/software/gsl/
- SciPy: https://www.scipy.org/
- Society for Industrial and Applied Mathematics (SIAM): https://www.siam.org/
- Coursera: https://www.coursera.org/
- Khan Academy: https://www.khanacademy.org/

Suggested MOOCs:

- Introduction to Numerical Analysis edX: https://www.edx.org/course/introduction-to-numerical-analysis-2
- Introduction to Numerical Methods NPTEL: https://nptel.ac.in/courses/111/105/111105102/
- Numerical Methods Swayam: https://swayam.gov.in/nd1_cec18_ma11/preview
- Fundamentals of Numerical Methods Swayam: https://swayam.gov.in/nd1_noc19_ma03/preview
- Introduction to Numerical Analysis Udemy: https://www.udemy.com/course/introduction-to-numerical-analysis/
- Numerical Analysis for Applied Mathematics OpenLearn: https://www.open.edu/openlearn/science-maths-technology/mathematicsstatistics/mathematics/numerical-analysis-applied-mathematics/content-section-0
- Numerical Analysis for Differential Equations OpenLearn: https://www.open.edu/openlearn/science-maths-technology/mathematicsstatistics/mathematics/numerical-analysis-differential-equations/content-section-0

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Compor	nent	Content	Duration	Marks	Sub Total
A	Test	1	1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test	2	Remaining 3 units	2 hours	15 (Set for 70)	
В	Assignm	nent			04	10
С	Class activ	vity			06	
					Grand Total	30
Assignn	 Notes written by the learner on the different topics in the syllabus. Problem Solving. 					opics in the
Class ac	Class activity Quiz / Surprise Quiz Seminar Situation based question etc. 					

Core Course (Theory)					
Fo	For the students admitted from A.Y. 2021-2022 & onwards				
Offering Depart	Offering Department: Mathematics Offered to: B.Sc. Mathematics				
	Semester – VI				
Course Code	Course	Title	Course Credit and		
			Hours		
21UMTCC603	Core 17: Optimiz Mathematical P	zation through rogramming.	4 Credits - 4 hrs/wk (4 Theory)		

Course Description:

The course "**Optimization through Mathematical Programming**" is designed for undergraduate students and introduces them to the principles and techniques of optimization. The course covers topics such as Introduction to Operations Research, Linear Programming Problems, Duality in LPP and Game Theory, Transportation Problems, Assignment problems and Sequencing Problems. Students will learn to formulate optimization problems in various real-life applications and apply optimization techniques to solve them. The course emphasizes the use of mathematical models to solve complex optimization problems. Throughout the course, students will develop problem-solving skills, critical thinking abilities, and an understanding of the fundamental concepts and principles of optimization.

Course Purpose:

The purpose of the course "**Optimization through Mathematical Programming**" in a UG program is to provide students with an understanding of the theoretical and practical aspects of optimization techniques used in Operations Research. The course aims to equip students with the necessary knowledge and skills to formulate and solve linear programming problems, transportation problems, assignment problems, and sequencing problems. Students will learn how to interpret and analyze optimization results and make informed decisions based on them. Additionally, the course aims to introduce students to the concepts of duality in linear programming and game theory. Overall, the purpose of the course is to enable students to apply optimization techniques to real-world problems and to prepare them for further study in related fields.

Course Outcomes: Upon completion of this course, the learner will be able to			
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)	

CO1	Recall and explain the fundamental concepts of Operations Research.	K1
CO ₂	Evaluate the feasibility and optimality of linear programming problems using graphical method and simplex method.	K4, K6
CO ₃	Evaluate the optimal solution to transportation problems using various methods like Vogel's approximation method and MODI method.	K ₄ , K ₆
CO ₄	Analyze the properties of the assignment problem and formulate it using the Hungarian method.	K ₄ , K ₆
CO5	Analyze and solve sequencing problems using various methods like Johnson's rule and Branch and Bound method.	K4, K6
CO ₆	Synthesize and present the solutions to optimization problems using appropriate mathematical and computational tools.	K ₆

Course Contents	
Unit-I: Introduction to Operations Research	9
 Basic of Operations Research. History and development of Operations Research Applications and scope of Operations Research The linear programming problems Formulation of LPP Matrix form of the LPP General form, Canonical form Standard form of the LPP Graphical method to solve LPP Some definitions and basic properties of convex sets Convex functions and concave function 	
Unit-II: Unit 2:Linear Programming	
 Basic definitions to use Simplex method Simplex method (algorithm) to solve LPP Big-M method (Penalty method) to solve LPP Two phase method to solve LPP Problems of LPP based on these methods 	
Unit- III: Duality in LPP and Game Theory	10
 Principle of duality in LPP Primal LPP and method to find its dual LPP Simple problems of duality. Introduction to Game Theory Two-person zero-sum game Minimax and maximin principles Saddle point of a game Games without a saddle point 	

• Solution of games by dominance rule.		
• Iterative method to solve a game.		
Unit- IV: Transportation Problems		
The Transportation Problems		
• Mathematical and matrix form of TP.		
• Initial solution of TP by NWCM, LCM and VAM		
• Optimum solution of TP by MODI method (u-v method)		
(except degenerate solution),		
• Balanced and unbalanced TP (Simple problem)		
Unit- V: Assignment problems and Sequencing Problems		
Mathematical and matrix form of Assignment Problem		
Hungarian method to solve Assignment Problem		
• Problems of Assignment and its solution based on this method.		
Introduction to Sequencing Problems		
Terminology Notations and Assumptions		
 Processing n-jobs through two machines 		

• Processing n-jobs through three machines.

Pedagogic Tools:

- Chalk and board
- Power point presentation
- Seminars
- Online resources

Text Books:

- 1. J. K. Sharma, (2006), Operations Research (theory and Applications), MacMillan Publishing House .
- 2. Nita H. Shah, Gor, Ravi M. Soni, Hardik Shah, (2010), Operations Research, PHI Learning.

Reference Books:

- R. K. Gupta, (2018), Operations Research, Krishna Prakashan Mandir, Meeut.
- Hamdy A. Taha,(2013) Operations Research: An Introduction, Pearson Education India,

Suggested reading / E-resources:

- OR-Tools: https://developers.google.com/optimization
- OptaPlanner: https://www.optaplanner.org/
- Coin-OR: https://www.coin-or.org/
- AIMMS: https://www.aimms.com/english/
- GLPK: https://www.gnu.org/software/glpk/
- OpenSolver: https://opensolver.org/

Suggested MOOCs:

- "Linear Optimization" on Coursera: https://www.coursera.org/learn/linearoptimization
- "Introduction to Linear Optimization" by The Hong Kong University of Science and Technology on edX: https://www.edx.org/course/introduction-to-linear-optimization
- "Discrete Optimization" by The University of Melbourne on Coursera: https://www.coursera.org/learn/discrete-optimization
- "Introduction to Operations Research" by RWTH Aachen University on edX: https://www.edx.org/course/introduction-to-operations-research.

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Compor	nent	Content	Duration	Marks	Sub Total
А	Test 1		1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test	2	Remaining 3 units	2 hours	15 (Set for 50)	
В	Assignm	nent			04	10
С	Class activity				06	
					Grand Total	30
Assignment •		Notes written syllabus. Problem Solvi	by the learner on ng.	n the different to	opics in the	
Class activity • • •		Quiz / Surpris Seminar Situation base	e Quiz d question etc.			

Core Course (Practical)					
Fo	For the students admitted from A.Y. 2021-2022 & onwards				
Offering Department: Mathematics Offered to: B			.Sc. Mathematics		
	Semester – VI				
Course Code	Course Title		Course Credit and		
			Hours		
21UMTCC604	Core Pra	ctical 6:	6 Credits - 12 hrs/wk		
	Practical on Advanced	l Numerical Analysis			
	and Optimiz	cation (Ap).			

Course Description:

Practical on **Advanced Numerical Analysis and Optimization** is a course designed for undergraduate students majoring in Mathematics. This course provides a comprehensive understanding of advanced topics in numerical analysis and optimization. The course introduces students to advanced numerical techniques and optimization algorithms. The course covers topics such as central difference interpolation formulae, interpolation with unequal intervals, numerical differentiation, numerical integration, numerical solution of ordinary differential equations, and optimization techniques.

The course emphasizes hands-on experience with numerical algorithms and optimization techniques. The course also provides an introduction to optimization techniques such as linear programming. By the end of the course, students will have developed proficiency in using numerical algorithms and optimization techniques to solve problems in various applications.

Course Purpose:

The purpose of a course on Practical **Advanced Numerical Analysis and Optimization** for an undergraduate program in Mathematics is to provide students with the necessary skills and knowledge to solve advanced mathematical problems using numerical methods and optimization techniques. The course aims to help students develop a deep understanding of advanced numerical analysis techniques and their practical applications in optimization problems.

The course will cover topics such as central difference interpolation formulae, interpolation with unequal intervals, numerical differentiation, numerical integration, and numerical solutions of ordinary differential equations. Students will learn how to use these techniques to solve optimization problems. At the end of the course, students will have a strong understanding of advanced numerical analysis and optimization techniques and will be able to apply them to solve mathematical problems in various fields.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K₁ to K₅)		
CO1	Apply central difference interpolation formulae to interpolate a given set of data and evaluate the accuracy of the interpolation.	K ₃ , K ₆		
CO ₂	Analyze the effect of unequal intervals on the accuracy of interpolation using Lagrange's interpolation formula.	K4		
CO ₃	Derive and apply numerical differentiation methods such as forward difference, backward difference, and central difference to approximate the derivative of a given function.	K ₃		
CO ₄	Evaluate the accuracy and stability of numerical integration methods such as trapezoidal rule, Simpson's rule, and Gaussian quadrature.	K ₃ , K ₄		
CO ₅	Implement numerical methods such as Euler's method, improved Euler's method, and Runge-Kutta method to solve ordinary differential equations.	K ₅		
CO ₆	Analyze the convergence, consistency, and stability of numerical methods for solving ordinary differential equations	K ₆		
CO ₇	Recall and explain the fundamental concepts of Operations Research.	K ₁ , K ₂		
CO ₈	Evaluate the feasibility and optimality of linear programming problems using graphical method and simplex method.	К4		
CO ₉	Evaluate the optimal solution to transportation problems using various methods like Vogel's approximation method and MODI method.	K4		
CO ₁₀	Analyze the properties of the assignment problem and formulate it using the Hungarian method.	K ₆		
CO ₁₁	Analyze and solve sequencing problems using various methods like Johnson's rule and Branch and Bound method.	K ₆		

List of Practical				
Sr	Experiments			
•				
1	(i) Gauss forward interpolation formula.	6		
	(ii) Gauss backward interpolation formula.	6		
2	Sterling's formula.	4		
3	Bessel's formula.			
4	Laplace-Everett's formula.			
5	Interpolation with unequal intervals.			

6	Numerical differentiation.		
7	Numerical integration.		
8	(i) Taylor's formula.	4	
	(ii) Picard's formula.	4	
	(iii) Euler's method.	4	
9	(i) Runge's method	4	
	(ii) Runge-Kutta's method	4	
10	Milne's method	4	
11	Solve the given LPP using Graphical method.	4	
12	Solve the given LPP using Simplex method.	8	
13	Solve the given LPP using BIG -M method.	6	
14	Solve the given LPP using TWO-PHASE method.	6	
15	Obtain DUAL of the given Primal LPP.	4	
16	(i) Find the initial solution of given transportation problem using	4	
	NWCM method.	4	
	(ii) Find the optimum solution of given transportation problem using	4	
	LCM method.		
	(iii) Find the optimum solution of given transportation problem using		
	VAM method.		
17	Find the optimum solution of given transportation problem using MODI	6	
	method.		
18	Find the optimum solution of given assignment problem.	6	
19	(i) Find the optimum solution of given two-person zero sum game	4	
	without saddle point.	4	
	(ii) Find the optimum solution of given two-person zero sum game using		
	iterative method.		
20	(i) To find optimum solution of sequencing problem with n-jobs through	4	
	two machines.	4	
	(ii) To find optimum solution of sequencing problem with n-jobs through		
	three machines.		

- Chalk and board
- Computer Laboratory
- Power point presentation
- Seminars
- Online resources

Text Books:

- M. K. Jain, S.R.K. Iyengar and R.K. Jain, (2022), Numerical Methods, 8th Edition, New Age International Publishers, New Delhi.
- Numerical Methods with C++ Programming, (2009), Nita H. Shah, PHI Learning Pvt. Ltd.
- J. K. Sharma, (2006), Operations Research (theory and Applications), MacMillan Publishing House .
- Nita H. Shah, Gor, Ravi M. Soni, Hardik Shah, (2010), Operations Research, PHI Learning.

Reference Books:

- S. D. Conte and Carl De Boor, (2018), Elementary Numerical Analysis, 3rd Edition, McGraw-Hill, New York.
- S.S. Sastry, (2012), Introductory Methods of Numerical Analysis, 5th Edition, PHI Learning Private Limited, New Delhi.
- R. K. Gupta, (2018), Operations Research, Krishna Prakashan Mandir, Meeut.
- Hamdy A. Taha,(2013) Operations Research: An Introduction, Pearson Education India,

Suggested reading / E-resources:

- NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/
- Wolfram MathWorld: https://mathworld.wolfram.com/
- Numerical Recipes: https://www.nr.com/
- The Netlib Repository: https://www.netlib.org/
- Coursera: https://www.coursera.org/
- Khan Academy: https://www.khanacademy.org/
- OR-Tools: https://developers.google.com/optimization
- OptaPlanner: https://www.optaplanner.org/
- Coin-OR: https://www.coin-or.org/
- AIMMS: https://www.aimms.com/english/
- GLPK: https://www.gnu.org/software/glpk/
- OpenSolver: https://opensolver.org/

Suggested MOOCs:

- Numerical Methods: https://www.edx.org/course/numerical-methods
- Introduction to Numerical Methods: https://www.futurelearn.com/courses/numericalmethods-introduction
- "Linear Optimization" on Coursera: https://www.coursera.org/learn/linearoptimization
- "Introduction to Linear Optimization" by The Hong Kong University of Science and Technology on edX: https://www.edx.org/course/introduction-to-linear-optimization
- "Discrete Optimization" by The University of Melbourne on Coursera: https://www.coursera.org/learn/discrete-optimization
- "Introduction to Operations Research" by RWTH Aachen University on edX: https://www.edx.org/course/introduction-to-operations-research.
Methods of Assessment & Tools:

Components of CIA: 40 marks

Sr. No.	Component	Content	Duration	Marks	Sub Total
А	Test 1	1-10 Experiments	$1\frac{1}{2}$ hours	15	30
	Test 2	11-20 Experiments	$1\frac{1}{2}$ hours	15	
В	Attendance and Regularity			5	10
С	Class Activities			5	
	Grand Total				
Class activity		QuizSituationHandbox	on based question ook		

Note: Any other assessment tools or methods can be adopted as per requirement of the course

Enclosure BMTIII

Shri Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous)

Affiliated to Saurashtra University, Rajkot

Trans Disciplinary Elective Course

Core Course (Theory)				
For the students admitted from A.Y. 2021-2022 & onwards				
Offering Depart	ment: Mathematics	Offered to: All Other Departments for all		
		B.Sc.	Program	
Semester – V				
Course Code	Course Title		Course Credit and	
			Hours	
21UMTTD01	TDE 2: Probability & Distributions		2 Credits - 2 hrs/wk	
			(2 Theory)	

Course Description:

The course on Probability & Distributions provides a comprehensive understanding of the core principles and applications of probability theory. Students will explore random experiments, sample spaces, and events, and learn to apply the laws and theorems of probability. The course covers mathematical expectation, discrete random variables, and probability distributions such as the Binomial and Poisson distributions. Students will analyze the mean, variance, and properties of these distributions, enabling them to model and solve real-world problems involving uncertainty and randomness. Through lectures, problem-solving exercises, and practical examples, students will develop the ability to apply probability theory in various fields, including finance, statistics, and decision-making.

Course Purpose:

The purpose of the course on Probability & Distributions is to equip students with a solid inderstanding of the fundamental concepts and applications of probability theory. The course aims o develop students' ability to analyze and quantify uncertainty, enabling them to make informed lecisions in various contexts. By studying probability distributions and their properties, students vill gain the necessary skills to model and solve real-world problems involving randomness and rariability. The course also aims to foster critical thinking and problem-solving abilities, as students earn to apply probability theory to diverse fields such as statistics, finance, economics, and engineering. Overall, the course aims to provide a strong foundation in probability theory that orepares students for further studies and practical applications in various disciplines.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level		

		(K1 to K6)
CO1	Define and explain the basic concepts of probability, such as random experiments, sample spaces, and events.	К1,
CO ₂	Apply the laws of probability, such as the addition and multiplication rules, to calculate probabilities of simple and compound events.	K ₂
CO ₃	Analyze and evaluate the properties and characteristics of probability distributions, such as the Binomial and Poisson distributions.	K ₃
CO ₄	Compare and contrast different probability distributions and their applications in various fields, such as finance, statistics, and engineering.	K4
CO ₅	Design and conduct experiments to generate data and analyze it using probability distributions and statistical techniques.	K5
CO ₆	Evaluate and interpret real-world scenarios and make informed decisions based on the analysis of probabilities and distributions.	K ₆

Course Contents		
Unit-I: Set Theory & Logic		
 Basic of Intuitive set theory. Operations for sets. Algebra of sets. Vann Diagram. Logic. The statement calculus -Truth table. The statement calculus -Consequence. The statement calculus -Applications. 		
Unit-II: Probability		
 Random Experiments. Sample Space. Generation of Sample Space. Events & Algebra or Events. Laws of probability. Theorems of probability. Bayes' Theorem. 		
Unit- III: Mathematical Expectation		
 Discrete random variable. Probability distributions of a discrete random variable. Mathematical Expectation of a discrete random variable. Variance of a random variable. 		

Unit- IV: Probability distributions		
 Introduction. Binomial Distribution. Mean and Variance of Binomial Distribution. Properties of Binomial Distribution. 		
Unit- V: Poisson Distribution		
 Poisson Distribution. Mean and Variance of Poisson Distribution. Properties of Poisson Distribution. 		

Pedagogic Tools:

- Chalk and board (Lecture Method)
- Power point presentation
- Seminars
- Classroom discussions and debates
- Online resources

TEXT BOOKS: -

- 3. Digambar Patri, D. N. Patri, Statistical Methods, Kalyani Publications.
- 4. Prof. H. R. Vyas, Business Statistics, B. S. Shah Prakashan.

REFERENCE BOOKS:-

- 3. Nabendu Pal, Sabaded Sarkar, Statistics concepts and Applications, Prentice Hall of India.
- 4. J. N Kapur, H. C Saxena, Mathematical Statistics, S. Chand & Company Ltd.
- **5.** P.S.S. Sundar Rao, J.Richard, Introduction to BioStatistics and Research Method, PHI Learning Private Ltd.

Suggested reading / E-resources:

- Probability and Statistics Resources by UCLA Statistics https://stats.idre.ucla.edu/other/progams/
- Probability Course by MIT OpenCourseWare https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-andstatistics-spring-2014/
- Statistics how to: https://www.statisticshowto.com/
- Khan Academy: https://www.khanacademy.org/
- MathisFun: https://www.mathsisfun.com/
- Wolfram MathWorld: http://mathworld.wolfram.com/

Suggested MOOCs:

- "Probability and Statistics" by Stanford University on Coursera https://www.coursera.org/learn/probability-intro
- "Introduction to Probability The Science of Uncertainty" by edX https://www.edx.org/professional-certificate/harvardx-introduction-to-probability
- "Probability The Science of Uncertainty and Data" by MITx on edX https://www.edx.org/professional-certificate/mitx-probability-the-science-ofuncertainty-and-data
- "Introduction to Probability and Data" by Duke University on Coursera

https://www.coursera.org/learn/probability-intro-data

• "Probability and Statistics in Data Science using Python" by UC San Diego on Coursera

https://www.coursera.org/specializations/probability-statistics-python

- "Probability for Statistics and Data Science" by UC Santa Cruz on Coursera https://www.coursera.org/learn/probability-for-statistics
- "Bayesian Statistics: Techniques and Models" by UC Santa Cruz on Coursera https://www.coursera.org/learn/mcmc-bayesian-statistics

Methods of Assessment & Tools:

Components of CIA: 30 marks

Sr. No.	Compo	nent	Content	Duration	Marks	Sub Total
Α	Test 1		1 st and 2 nd units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test	2	Remaining 3 units	2 hours	15 (Set for 70)	
В	Assignn	nent			04	10
С	Class activity				06	
Grand Total 30				30		
 Assignment Notes written by the learner on the different topics in syllabus. Problem Solving. 			opics in the			
Class activity • • •		Quiz / Surprise Quiz Seminar Situation based question etc.				

Note: Any other assessment tools or methods can be adopted as per requirement of the course

13th BoS All Theory & Practical courses B.Sc. Sem - V and VI, Shri M & N Virani Science College, Rajkot. Page 78 of 78