Annexure I

Department: Physics Programme: **B.Sc. Chemistry/Mathematics**

Semester – I			
Course Code	Course Title	Credits	
21UCHID101/21UMTID101	: Electricity and modern physics	3	

Course Description:

This course covers of fundamental concepts of different topics of electricity, some basics concepts of modern physics like structure of atom and wave mechanics are covering fundamental aspect of modern physics which are useful for chemistry and mathematics students

Course Purpose:

As this course is design for study of chemistry and Mathematics students as ICD subject different fundamental concepts of electricity are covered in such a way that it can be helpful to them in future study and modern physics aspect are always interdisciplinary useful topic

Course Outcomes: Upon completion of this course, the learner will be able to			
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)	
CO ₁	D.C.Circuits & A.C.Circuits analysis	K3	
CO ₂	Network Theorems & Multimeter	K3	
CO ₃	Structure of The Atom	K2	
CO ₄	Wave Mechanics	K2	
CO ₅	Particle accelerators and cosmic rays	K1, K3	

Course Content	Hours
Module-I: D.C.Circuits & A.C.Circuits	10 hrs

• (a) Particle accelerators		
Module V: Particle accelerators and cosmic rays		
Relation between Phase velocity & Group velocity .		
 Group velocity of de Broglie's wave 		
 De Brogne wavelength & Phase velocity of De Brogne's wave Expression for group velocity 		
De'Broglie wavelength & Phase velocity of De'Broglie's wave		
Module IV: Wave Mechanics	8hrs	
Quantum numbers		
Atomic Excitation, Vector Model		
Correspondence Principle, Critical Potentials		
Failure of Classical Mechanics ,Effect of Nuclear Motion on Atomic Spectra		
Module III: Structure of The Atom	08hrs	
Multimeter		
Norton's theorem		
 Maximum power transfer theorem Thevenin's theorem 		
Constant current source Maximum power transfer theorem		
Constant voltage source		
Module-II: Network Theorems & Multimeter	08 hrs	
Parallel resonance		
• L-C-R series resonance		
L-C-R series A.C.source		
 R.M.S value of Alternating currents 		
 Review of Alternating currents, Cycle, Frequency, Phase 		
A.C.Circuits		
 Circuit with D.C. source 		
 Charge and Discharge of R-C 		

- Introduction, Linear accelerator
- Cyclotron or Lawrence cyclotron
- Synchrocyclotron
- (b) Cosmic rays
- Discovery of cosmic rays
- Latitude effect, The east west effect or the azimuth effect
- The altitude effect, Primary cosmic rays
- Secondary cosmic rays
- Origin of cosmic rays

IDC - I Practical

Physics Practical – Electricity and Mechanics

21UCHID102/21UMTID102	physics Practical	6 Hrs/Week	2 Credits
•	1 3		

Course Description:

The practical course includes all fundamental practical of measurement , mechanics and electricity and different circuit fabrication

Course Purpose:

The course of practical is develop to make student well verge to electricity tools, circuit fabrication and measurement methodology

Course Outcomes: Upon completion of this course, the learner will be able to			
CO No.	CO Statement	Blooms taxonomy Level (S ₁ to S ₆)	
CO ₁	Basic measurement methods	S1	
CO ₂	Basic circuit analysis	S1	
CO ₃	Use of rotational mechanic to evaluate different parameters of solid body.	S1 & S3	
CO ₄	Material properties of body	S2	
CO ₅	Circuit fabrication	S2 & S3	

List of Practical

- Discharge of Capacitor and RC time constant.
- Series Resonance.
- Parallel Resonance.
- Verification of Maximum power transfer theorem. (Using PCB)
- Fabrication: Designing, Mounting, Soldering, Analysing and testing of Series Resistors.
- Fabrication: Designing, Mounting, Soldering, Analysing and testing of Parallel Resistors Use of Multimetre
- Low Resistance by projection method
- Verification of Ohm's law
- Low Resistances by Potentiometer
- Error analysis(2)
- bar pendulum(2)
- Bifilar suspension(2)
- Tensional pendulum (3)
- Young's modulus by serl's method
- Possion's ratio and elastic parameter of rubber tube(3)

Text books:

- V.K.Mehta & Rohit Mehta., Principles of Electronics S.Chand Comp.
- Fundamentals Of Physics By Halliday, Resnick & Walker, Welly Publication.

Reference books:

• Modern Physics - R.Murugeshan & Kiruthiga Sivaprasath, S.Chand Comp.

• . Engineering Physics - R.K.Gaur, S.L.Gupta, Dhanpat Rai Publications

Reference Book: (For Practical)

- 1. C.L.Arora Practical Physics, S. Chand Comp.
- 2. Chauhan & Singh Advanced Practical Physics. Pragati Prakashan.
- 3. Experimental Physics, University Granth Nirman Board, (Gujarati Medium)

Pedagogic tools:

- Chalk and Board
- Power point presentation
- Seminar
- Videos

Methods of Assessment & Tools:

Components of CIE: 30 marks (Example as below)

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
A	Test 1	1 st 2 units	1 ^{1/2} hours	5 (Set for 30)	20
	Test 2	All 5 units	3 hours	15 (Set for 70)	
В	Assignment	2		08	10
C	Class activity			12	
	Grand Total 30				
Assignment					
Class activity		 Reaction paper Quiz One-minute paper Situation based question Application card etc 			

Note: Any other assessment tools or methods can be adopted as per requirement of the course.