Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Rajkot Affiliated to Saurashtra University, Rajkot

IDC For the students admitted from A.Y. 2021-2022 & onwards				
Offering Department: Physics	Offered to: B.Sc. Chemistry/B.Sc. N	Offered to: B.Sc. Chemistry/B.Sc. Mathematics		
Semester - II				
Course Code	Course Title	Course Credit and Hours		
	IDC-2:Physics: Electronics and	4 Credits - 4hrs/wk(T)		
	Radiation physics	3 hrs/wk(P)		

Course Description:

This course will enhance students understanding of fundamental concepts of different topics such solid state physics and Nuclear Physics. Keeping focus on Nuclear Physics, X-rays and Natural Radioactivity are also included in the course which also belongs to the criteria of interdisciplinary subject between chemistry and physics.

Course Purpose:

This course aims to provide basic understanding of Solid state electronics and Nuclear physics which is foundation platform of Solid state physics and Nuclear Physics can help to understand fundamental semiconducting electronic circuits and their applications, the knowledge of X-rays can help students to understand its relevance with medical science and material testing methods.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)		
CO ₁	Understand the different types to semiconductor diodes and their biasing methods	K1		
CO ₂	Understand performance parameters of different types of rectifier circuits	K2		
CO ₃	Understand various types of special purpose diodes and their applications.	K2		

CO ₄	Understand the production of X-rays and its properties and applications.	K2
CO ₅	Understand different phenomena taking place in natural Radioactivity.	К3

Course Content	
Module-I : Semiconductor Diode	
 Semiconductor diode Half wave rectifier Efficiency of half wave rectifier Full-wave rectifier Centre-tap full wave rectifier Full wave bridge rectifier Efficiency of full-wave rectifier Ripple factor, Comparison of rectifiers Filter circuits , Types of filter Circuits Voltage stabilization Zener diode Zener diode as voltage stabilizer 	
Module-II: Waves	12 hrs
 Wave motion Differential equation of a wave motion Particle velocity and wave velocity Newton's formula for velocity of sound in air and velocity of sound in water Laplace's correction, velocity of sound in isotropic solids Velocity of transverse waves along a stretched string 	
· Melde's experiment	
 Module III: X-rays Production of X-rays Origin of X-ray X-ray Spectrum, Intensity Measurement of X-rays Wave nature of X-ray Laue's Spot & Uses, Bragg's Spectrometer Theory of Diffraction, Bragig's Law Compton effect Properties of X-ray 	14hrs
Module IV: Natural Radioactivity	11hrs
 (a) Basic concept of radioactivity Radioactivity Natural and Artificial Radioactivity General Properties of Radioactive Radiation, and Radioactive 	

Disintegration (b) Law of disintegration • Law of Radioactive Disintegration • Decay Constant • Half-life Period • Average life	
Module V: Special Purpose Diodes:	12hrs
 Light emitting diode Multicolour LEDs Applications of LED Photo diode Photo-diode operation Characteristics of Photo-diode Applications of Photo-diode 	

Text books (2 textbooks):

IDC – II Practical Physics Practical – Electronics ,Sound and Modern physics

physics i factical 5 in s/ week i Credits		physics Practical	3 Hrs/Week	1 Credits
---	--	-------------------	------------	-----------

Course Description:

The practical course includes all fundamental practical focusing on Solid State Physics and Waves. It also coves study and fabrication of various electronic circuits and frequency measurement techniques.

CO No.	CO Statement	Blooms taxonomy Level (S1 to S6)
CO ₁	Basic measurement methods	S1
CO ₂	Basic circuit analysis	S1
CO ₃	Understand different frequency measurement teachings	S1 & S3
CO ₄	Basis circuit arrangement	S2
CO ₅	Circuit fabrication	S2 & S3

Course Purpose:

The course of practical is develop to make student well verge to electricity tools , circuit fabrication and measurement methodology

List of Practical

- 1. To determine frequency of a tuning fork by Melde's method.
- 2. To prove Melde's law of vibrating string at constant tension and constant P/L and find the frequency of tuning fork.
- 3. To prove Melde's law of vibrating string at constant number of loops and constant $\frac{\sqrt{T}}{T}$ and find the frequency of tuning fork.
- 4. To prove Melde's law of vibrating string at constant length of string and constant $\frac{P}{\sqrt{L}}$ and find the frequency of tuning fork.
- 5. To study the resonation and determine the frequency of tuning fork.
- 6. To study the resonation and determine the velocity of sound.
- 7. To determine reduction factor of T. G.
- 8. To prove Ohm's law and find unknown resistance by T. G.
- 9. Calibration of ammeter by T. G.

- 10. To find the magnetic moment of a bar magnet by deflection magnetometer.
- 11. To compare magnetic moment of two bar magnets by deflection magnetometer.
- 12. To compare magnetic moment of two bar magnets by null method.
- 13. To determine I-V characteristics of a P-N Junction diode.
- 14. To determine I-V characteristics of a Zener diode.
- 15. To determine I-V characteristics of a Photo diode at constant illumination.
- 16. Characteristics of P-N junction diode and dynamic resistance.
- 17. Study of half wave rectifier.
- 18. Study of full wave rectifier.
- 19. Fabrication of half wave rectifier.
- **20.** Fabrication of full wave rectifier.

Reference books (2 or 3 reference books):

- 1. C.L.Arora Practical Physics, S. Chand Comp.
- 2. Chauhan & Singh Advanced Practical Physics. Pragati Prakashan.
- 3. Experimental Physics, University Granth Nirman Board, (Gujarati Medium)
- 4. B.Saraf et al-Physics through experiments Vol. I & II
- 5. Chattopadhyay, Rakshit & Saha Practical Physics
- 6. A.S. Vasudeva Modern Engineering Physics, S.Chand Company.

Pedagogic tools:

- Chalk and Board
- Power point presentation
- Seminar
- Videos

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
Α	Test 1	1 st 2 units	$1^{1/2}$ hours	5 (Set for 30)	20
	Test 2	All 5 units	3 hours	15 (Set for 70)	
В	Assignment			5	10
С	Class activity			5	
Grand Total				30	
Assignment • Abstract and executive summary • Experimental design • Concept mapping • Student generated handbook • Essay writing etc					
Qu On Site		QuizOne-Situa	tion paper minute paper ation based question lication card etc		

Components of CIE: 30 marks (Example as below)

Note : Any other assessment tools or methods can be adopted as per requirement of the course.