Shree Manibhai Virani & Smt. Navalben Virani Science College, Rajkot (Autonomous)

Affiliated to Saurashtra University, Rajkot BOARD OF STUDIES – MICROBIOLOGY

10th Meeting of Board of Studies in Microbiology

Programme: B.Sc. Microbiology

Date: 18.12.2021 Time: 10.30 am Mode: Hybrid

Agenda

- 1. Confirmation of MoM of previous BoS held on 30/06/2021
- 2. Scheme of Learning and Evaluation for 2nd Sem. of B.Sc. Microbiology programme
- 3. Syllabi of all theory & practical courses of Sem.-II of B.Sc. Microbiology programme
- 4. Syllabi & evaluation norms of Part-III: Value Added Course/s (VAC) offered by the department
- 5. Question paper pattern for all theory & practical courses of Sem.-II of B.Sc. Microbiology programme
- 6. List of paper setters and examiners for all theory & practical courses of B.Sc. Microbiology programme
- 7. Any other agenda with permission of the Chair

Shree Manibhai Virani & Smt. Navalben Virani Science College, Rajkot (Autonomous)

Affiliated to Saurashtra University, Rajkot BOARD OF STUDIES – MICROBIOLOGY

$10^{th}Meeting\ of\ Board\ of\ Studies\ in\ Microbiology$

Programme: B.Sc. Microbiology

Date: 18.12.2021 Time: 10.30 am Mode: Hybrid

BoS Members:

S. No.	Name	Designation	Presence/Absence
1.	Dr. Neepa Pandhi	Head of Department, Chairperson	
2.	Dr. Datta Madamwar	Subject Expert, VC Nominee	
3.	Dr. Mehul Dave	Subject expert, AC Nominee	
4.	(Dr.) Chitra Bhattacharya	Subject expert, AC Nominee	
5.	Dr. Madhavi Joshi-Bagtharia	Industry Representative	
6.	Dr. Vasant Jadeja	Faculty Member	
7.	Dr. Shivani Patel	Faculty Member	
8.	(Dr.) Lt. Hemangi Bhatt	Faculty Member	
9.	Dr. Hitarth Bhatt	Faculty Member	
10.	Dr. Rajesh Patel	Meritorious PG Alumni	

Sarvodaya Kelavani Samaj Managed Shree Manibhai Virani & Smt. Navalben Virani Science College, Rajkot (Autonomous)

Affiliated to Saurashtra University, Rajkot

Reaccredited at the "A" Level (CGPA 3.28) by NAAC

"STAR" College Scheme & Status by MST-DBT

A College with Potential for Excellence – CPE (Phase - II) by UGC

Accredited at the G-AAA Highest Grade 'A-1' Level by KCG, Govt. of Gujarat

UGC-DDU KAUSHAL Kendra

GPCB-Government of Gujarat approved Environmental Audit Centre

SCHEME OF LEARNING AND EVALUATION

Of

B. Sc. MICROBIOLOGY

(W.e.f June 2021)

Shree Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous)

Affiliated to Saurashtra University, Rajkot Department of Microbiology

B. Sc. MICROBIOLOGY

Regulations for Students Admitted from A.Y. 2021-2022 & Onwards

ELIGIBILITY

Candidate who has passed Higher Secondary Certificate (10+2) examination with Science subjects in respective streams of Gujarat State or any other examination recognized as equivalent thereto with a good academic record, shall be eligible for admission, subject to such other conditions prescribed by the Parent University and State Government from time to time. All admissions are provisional and subject to the approval of Parent University.

LATERAL ENTRY

Candidates seeking admission directly in third semester of B.Sc. Microbiology must have passed examination of Diploma in Pharmacy or relevant subjects will be eligible for admission. A result of this type of candidate will be declared by considering his/her marks of semester 3 to 6 in aggregate and accordingly class will be awarded.

DURATION OF THE PROGRAMME

The Program

- 1. Shall extend over a period of three years comprising of six semesters for lateral entrants
- 2. Comprises of two semesters in one academic year wherein each semester normally will be of minimum 90 teaching days.

CHOICE BASED CREDIT SYSTEM (CBCS)

The CBCS provides an opportunity for the students to choose courses from the prescribed courses based on their interest. Mainly, each course is worth a certain number of credit points, determined by different criteria including learning outcome, contact hours etc.

The following mechanism is adopted for the purpose of computation of credits earned by the students:

a) 1 hour instruction of Theory = 1 Credit
 b) 2-3 hours instruction of Tutorial = 1 Credit
 c) 2-3 hours instructions of Practical = 1 Credit

OUTCOME BASED EDUCATION (OBE)

Outcome based education is based on revised Bloom Taxonomy and is a learner-centric teaching and learning methodology in which the course delivery and assessment are planned to achieve stated objectives and outcomes. It focuses on measuring students performance i.e. outcomes at different levels. OBE method of learning is adopted.

STRUCTURE OF THE PROGRAMME

UG program shall have a curriculum comprising theory and practical (separate / in built with theory) courses with a specified syllabus. The curriculum of the program is a blend of Language Courses, Core Courses, Interdisciplinary Courses (IDC), Discipline Specific Electives (DSE), Trans-disciplinary Electives (TDE) and Ability Enhancement Courses (AEC) shall be offered.

MEDIUM OF INSTRUCTION AND EXAMINATIONS

The medium of instruction and examinations shall be English, except for courses on Languages other than English.

EVALUATION

The evaluation shall generally comprise of Continuous Internal Assessment (CIA) and Semester End Examination (SEE) with percentage weightage as specified below, unless specified otherwise in the Scheme of Learning and Evaluation.

Components	Theory Courses	Practical Courses	
Continuous Internal Assessment (CIA)	Varies from 30 percent to 60	Varies from 40 percent to 100	
	percent based on the nature of	percent based on the nature of	
Assessment (CIA)	course.	course.	
Semester End Examination	Varies from 70 percent to 40	Varies from 40 percent to 60	
	percent based on the nature of	percent based on the nature of	
(SEE)	course.	course.	

COMPLETION OF PROGRAM TO EARN THE DEGREE CERTIFICATE

The University shall publish the result after evaluation and with the recommendations of Result Passing Board at the end of each semester. On approval / ratification of the results by the Academic Council, the student will be recommended to Governing Body for the award of the degree provided that the student have earned all the credits towards mandatory course / components as mentioned in Scheme of Learning and Evaluation.

MINIMUM QUALIFICATION FOR APPOINTMENT OF FACULTY MEMBER

As per norms of UGC and./or other related Regulatory body

Shree Manibhai Virani and Smt. NavalbenViraniScienceCollege, Rajkot (Autonomous) Affiliated to SaurashtraUniversity, Rajkot

Department of Microbiology B. Sc. MICROBIOLOGY

VISION OF THE DEPARTMENT

Our vision is to produce highly qualified and competent microbiologists with expertise in all the relevant areas, to develop and maintain a strong and supportive research programme to complement our national needs while strengthening local relevance and to rise as center of excellence and knowledge in the subject of Microbiology

MISSION OF THE DEPARTMENT

The Mission of Microbiology Department is to promote good quality education, research and to provide the most rigorous and inspiring training in the discipline of Microbiology with greater significance of application in all relevant areas. The Department strives to educate and mentor students to:

- Acquire practical skills necessary for operation and maintenance of small and medium scale industry and research institute,
- Be aware of the role of microorganisms in various aspects of life processes and understand their importance in agriculture, environment, food, health, and other areas,
- Apply microbiological techniques and technologies to the betterment of human life, environment and national economy,
- Contribute to the pursuit of knowledge by contributing meaningfully in the area of Research in Microbiology

OBJECTIVES OF THE PROGRAMME

The Curriculum is designed to attain the following learning goals which students shall accomplish by the time of their graduation:

- 1. This programme will enable students to understand the basic anatomy, physiology, diversity, and genetics of microorganisms including viruses, bacteria, protozoa, algae and fungi, and exploit their interactions with environment and human beings.
- 2. The Curriculum is designed to impart to students the skill to operate basic and advanced instruments used for analysis of various biomolecules.
- 3. This programme will enable students to acquire knowledge on the Microbiology, Cell Biology, Microbiology, Immunology, Bioprocess Technology and Molecular Biology to enable them to understand emerging and advanced concept in modern biology and help them to take their career in this field.
- 4. After completion of the programme, the students will be able to acquire the necessary theoretical and practical competencies in Microbiology to enable them to undertake higher studies in recognized Institutions of advance learning and engage gainful self-employment.
- 5. The Programme is intended to help the students to be the innovative and versatile personalities in the field of Life Science with quality education and provide the skilled manpower required by Research and Development, Institutions of Higher Learning and Industry.

GRADUATE ATTRIBUTES

- Academic excellence: Ability to identify key questions, research and pursue rigorous evidence-based arguments.
- Critical Thinking and Effective communications: Analysis and evaluation of information to form a judgment about a subject or idea and ability to effectively communicate the same in a structured form.
- Global Citizenship: Mutual understanding with others from diverse cultures, perspectives and backgrounds
- **Life Long Learning**: Open, curious, willing to investigate, and consider new knowledge and ways of thinking

PROGRAM EDUCATIONS OBJECTIVES (PEOs)

This prog	ran	nme will produce Graduates who will attain following PEOs after few years of graduation
		Core competency: will develop the competency to pursue higher education, successful
PEO 1	:	professional career, or be an entrepreneur with synergistic combination of the
		knowledge and skills of Microbiology and allied sciences
	:	Breadth of knowledge: will show the ability to critically analyse scientific data,
PEO 2		drawing objective conclusions from it and apply this knowledge to independently
FEO 2		design, and execute small research problems with the help of integrated knowledge of
		Microbiology and other domains for societal and human welfare.
	:	Preparedness: will have the potential to take any task or assignment in the capacity of
PEO 3		a leader or team member in the chosen occupations or careers and willreflect an
PEUS		aptitude and ability for contribution in academics, entrepreneurship, and research,
		equipped with good communication skills.
PEO 4	:	Professionalism: will possess strong professional ethics and expertise to fulfil moral
I EO 4		duties towards their profession, community, society and nation at large.
	:	Learning environment: will show readiness for lifelong learning necessary to meet
PEO 5		the ever evolving professional, social and personal demands through ethical,
		interpersonal and team skills.

PROGRAM OUTCOMES:

After co	mpl	etion of the B.Sc. Microbiology programme, the Graduate will be able to :
PO 1	:	Domain knowledge: Demonstrate an understanding of fundamental principles of Microbiology, its applications and scope, along with an ability to identify beneficial and harmful role of microorganisms for the benefit of Science and Society
PO 2	:	Problem analysis: Accurately identify and critically analyse pertinent problems in the field of Applied Microbiology and various domains of Biological sciences.
PO 3	:	Design/development of solutions: Search for and successfully arrive at viable conclusions/solutions pertaining to various aspects of life sciencesusing right approach and appropriate tools and techniques
PO 4	:	Conduct investigations of complex problems: Ability to investigate any complex problems related to Microbiology and other life science with the use of appropriate experimentaltools/techniques/equipment.
PO 5	:	Modern tool usage: Understand standard operating procedures, safety measures and acquire in-depth technical competence to handle the basic laboratory instruments, and develop the skills to locate and retrieve scientific information with modern data search tools.
PO 6	:	The Microbiologist and Society: Demonstrate the ability to understand the role of scientific developments in a changing world from the disciplinary perspective as well as in relation to its professional and everyday use, withan insight into one's role in society and act in an honest and consistent manner based on a strong sense of self and personal values.
PO 7	:	Environment and sustainability: Analyse the impact of scientific and technological advances on the environment and society and the need for sustainable development.
PO 8	:	Ethics: Commitment to professional ethics and responsibilities.
PO 9	:	Individual and team work: Exhibit the potential to effectively accomplish tasks as a leader or a member of a team as well as independently in multidisciplinary settings.
PO 10	:	Communication: Communicate effectively in spoken and written forms as well as through digital media with scientific community, society, and fellow mates.
PO 11	:	Project management and finance: Demonstrate knowledge and scientific understanding to design a research project and manage its execution to generate new scientific insights, innovations in Microbiology research and exhibit organizational skills for able management of time and resources.
PO 12	:	Life-long learning: Able to recognize the need to undertake life-long learning and acquire the capacity to build on critical thinking skills for periodic updating of scientific knowledge and its application.

PROGRAM SPECIFIC OUTCOMES (PSOs) for B. Sc. Microbiology programme

After c	om	pletion of the programme, the Graduate will:							
PSO1		Acquire knowledge on the fundamentals of Microbiology for sound and solid base which							
1301	•	enables them to understand the emerging and advanced concepts in life sciences							
		To equip the students with knowledge, skill and inspiration to pursue higher education and							
PSO2	:	research in Microbiology and allied fields in reputed institutes at national and international							
		level.							
PSO3		Be able to understand fundamental principles of Microbiology to find innovative solutions							
1303	•	for environment, agriculture, and health related issues at local and global level.							
		Apply the knowledge of Microbiology, preferably with the synergistic application of basic							
PSO4	:	understanding of other allied fields, for finding sustainable ethical solutions to existing							
		global problems in compliance to the SDGs							
		Become competent and eligible to appear in various competitive exams, getting placement							
PSO5	:	in government and private sectors of academia, research and industries, and become a							
		successful Microbiologist serving the Nation.							

Shree Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous)

Affiliated to Saurashtra University, Rajkot Department of Microbiology B. Sc. MICROBIOLOGY SCHEME OF LEARNING AND EVALUATION

For the students admitted from the A.Y. 2021-22 & onwards

			Seme	ester-	<u>-</u> I				
			Contac		SEE			Marks	
Course	Course	H	Irs/wk		Duration	CIA	SEE	Total	Credits
Code		T	Tu	P	hrs				
Part-I									
21ULCEN101	English-I –								
	Development of	3	-	-	3	40	60	100	3
	Functional English								
	Part-I Total	3	0	0		40	60	100	3
Part-II				,					
21UMBCC101									
	Fundamentals of				_				_
	Microbiology (F1)	4	-	-	3	30	70	100	4
21UMBCC102	Core2:Microbial								
	Growth and Control	4	_	_	3	30	70	100	4
21111 (DID 101	(F2)								
21UMBID101	IDC-1: Zoology-1	2		_	2	20	70	100	2
	Systematics and	3	-		3	30	70	100	3
2111141000102	Anatomy								
21UMBCC103				6	<i>C</i> 11	40	60	100	4
	Basic Microbial	-	-	6	6#	40	60	100	4
21UMBID102	Techniques IDC- Practical - 1:								
	Zoology-1:			6	3	40	60	100	2
	Systematics and	-	-	6	3	40	60	100	2
	Anatomy								
	Core Enrichment –				_		Evalu	ation at t	he end of
	1: Concept to		1	_		(20)		Semester	
	Practice Course		1			(20)	۲	Cinester	1 1
				10		170	330	500	17
	Part-II Total	11	1	12					
	ty Enhancement Cou	rses							
21AESD101	AECC I:							Remark	A 11.4:4
	Introduction to SDG	-	-	-	-		-		Audit
	(online course)							S	course
	AECC II:						•	•	
	Environmental					Evolue	ation of	the end	
	Conservation and	1	-	-	-		anon at 2 nd Sem		-
	Sustainable					01 2	2 36111	icsici	
	Development								

AECC III: Human Values for Holistic Living	1	2*	-	-	Evalua of 2	-		
FS 3: Career Acceleration Programme	2*							
Part-III Total	2	-	-		100	0	0	0
Total (Part-I to Part-III)	16	1	12	-	210	390	600	20
		29	•					

^{# 3}hrs on day1 and 3 hrs on day 2;

^{*} Beyond Academic hours

⁽⁾ Final evaluation for 100 marks be made at the end of Semester IV, which include 20 marks CIA in Semesters I, II, and III each, and of 40 marks in Semester IV.

			Semo	ester-	-II				
		Contac	t Hrs/	wk.	SEF	_	aximu		
Course Code	Course	T	Tu	P	Durat hrs	CIT	SE E	Total	Credits
		1	1 u	P					
Part –I			T						
21ULCEN20	English II – I Functional English	3	-	-	3	40	60	100	3
	Part-I Total	3	0	0		40	60	100	3
Part-II									
21UMBCC201	Core3: Microbial Taxonomy and diversity (F)	4	-	-	3	30	70	100	4
21UMBCC202	Core 4: Basic Biochemistry (F)	4	-	-	3	30	70	100	4
21UMBCC203	Core 5: Cell Structure and Organization (F)	4	-	-	3	30	70	100	4
21UMBID201	IDC-2: Botany	3	-		3	30	70	100	3
21UMBCC204	Core Practical - 2 Microbial Diversity and Biochemistry	-	-	6	6#	40	60	100	2
21UMBID202	IDC-2: Practical: Botany	-	-	6	3	40	60	100	2
	Core Enrichment - 2: Concept to Practice Course		1		-	(20)	Eval	luation at Semester	the end of ·- IV
	Part-II Total	15	1	12		200	400	600	19
Part-III: Al	oility Enhancement	Courses							
21xxx C S	ECC II: nvironmental onservation and ustainable evelopment	1	-	-	-	R	Kemark:	S	2
21xxxx H	ECC III: uman Values for olistic Living	1	2*	-	-	Remarks			3
	FS 3: Career Acceleration Programme	2*							
	Part-III Total	2	-	_		0	0	0	5
	Total (Part-I to Part-III)	20	1	12	-	240	460	700	27
			33			1	700		

- # 3hrs on day1 and 3 hrs on day 2;
- * Beyond Academic hours
- () Final evaluation for 100 marks be made at the end of Semester IV, which include 20 marks CIA in Semesters I, II, and III each, and of 40 marks in Semester IV.

Minimum one-month internship pertaining to learning for concept to practice/prototype or product development for start-up/mini and final semester project/skilling in the summer vacation/combination of semester break and summer vacation in industry/premier research institute/NGO, etc.

	Se	me	ster	-II	I				
		C	onta	oct	SEE	Ma			
Course Code	Course		rs/w Tu		Durat ion hrs	CIA	SEE	Total	Credits
Part – I						<u> </u>			
	English III –	3	-	-	3	40	60	100	3
	Part-I Total	3	0	0		40	60	100	3
Part-II									
21UMBCC301	Core6:	4	-	-	3	30	70	100	4
21UMBCC302	Core7:	4	-		3	30	70	100	4
21UMBCC303	Core8:	4	-		3	30	70	100	4
	DSE 1: Zoology-2:	3	-	-	3	30	70	100	3
21UMBCC304	Core practical – 3 –	-	-	6	6	40	60	100	2
	DSE 1: Practical	-	-	6	3	40	60	100	2
<no code="" course=""></no>	Core Enrichment – 1: Concept to Practice Course		1	-	-	20		lation at Semester	the end of
	Core Enrichment 2: Internship 1	ı	ı	ı		100		100	1
	Part-II Total	15	1	12		300	400	700	20
Part-III: Ability	Enhancement Courses								
	FS 3: Career Acceleration Programme (CAP)	-	2	-					Audit course
	Part-III Total	-	2	-		0	0	0	
	Total (Part-I to Part-III)	18	3	12	-	340	460	800	23
			33				800		23

	S	eme	ster	- I	V				
			onta		SEE Durati	Ma			
CourseCode	Course	Hrs/wk.		к. Р	on hrs	CIA	SEE	Total	Credits
Part – I									
	English IV –	3	-	-	3	40	60	100	3
	Part-I Total	3	0	0		40	60	100	3
Part-II									
21UMBCC401	Core 9:	4	-	-	3	30	70	100	4
21UMBCC202	Core10:	4	-		3	30	70	100	4
	Core elective 1:<1> <2>	4	-		3	30	70	100	4
	TDE 1	2	-	-	3	30	70	100	2
	DSE:2 -	3	-	-	3	30	70	100	3
	Core Practical – 4 –			6	6	40	60	100	3
21UMBCC403	Core elective Practical			4	3	40	60	100	2
	DSE:2 – Practical			6	3	40	60	100	2
21xxx	Core Enrichment – 1: Concept to Practice Course		1	-	-	40	-	100	-
	Part-II Total	17	1	18		270	530	800	24
Part-III: Ability	Enhancement Courses		ı						
<no code<="" subject="" td=""><td>>FS 3: Career Acceleration Programme (CAP)</td><td>-</td><td>2</td><td>-</td><td></td><td></td><td></td><td></td><td>Audit course</td></no>	>FS 3: Career Acceleration Programme (CAP)	-	2	-					Audit course
	Part-III Total	0	2	0					
	Total (Part-I to Part-III)	20	3	18	-	310	590	900	27
			37				900		

Minimum one month internship pertaining to learning for concept to practice/prototype or product development for start-up/mini and final semester project/skilling in the summer vacation/combination of semester break and summer vacation in industry/premier research institute/NGO etc.

	S	Seme	este	r– V	7				
		C	4	-4	SEE	Ma			
Course Code	Course		onta rs/w		Durat ion hrs	CIA	SEE	Total	Credits
		T	T u	P	111.5				
Part-II									
21UMBCC501	Core11:	4	-	-	3	30	70	100	4
21UMBCC502	Core12:	4	-	-	3	30	70	100	4
21UMBCC503	Core 13: (Self-study) –	1	_	_	3	30	70	100	4
21UMBCC504	Core 14: Concept Recapitulation Test (CRT) for Core Courses of Semester I to V				2	100	-	100	1
	Core elective 2: <1><2>	4	-		3	30	70	100	4
	TDE 2:	2	-	-	3	30	70	100	2
21UMBCC505	Core Practical – 5 -			9	6	40	60	100	3
	Core Elective Practical			4	3	40	60	100	2
	Core Enrichment 3: Internship 2	-	-	1		100		100	1
	Core Enrichment 4: Mini Project /Skill Enhancement	-	2	4	-	100	-	100	4
	Part-II Total	15	2	17		530	470	1000	29
Part-III: Ability	Enhancement Courses								
<no code="" subject=""></no>	FS-3 Career Acceleration Programme (CAP)	-	2	-			Remar	ks	Audit course
	Part-III Total	0	2	-		0	0	0	
	Total (Part-II to Part-III)	15	4	17	-	530	470	1000	29
			34				1000		

	Se	eme	stei	r-V	I				
		Contact			SEE	Maximum Marks			
Course Code	Course	_	onta rs/w		Durat ion hrs	CIA	SEE	Total	Credits
		Т	Tu	P	шт				
Part-II(Project	+ a Compulsory course/ Ac	dvar	iced	Co	urses + a	Comp	ulsory co	ourse)	
	Core15: (Compulsory course)	5	-	1	3	30	70	100	5
	Core16:	5	-	-	3	30	70	100	5
	Core – 17:	5	-	-	3	30	70	100	5
	Core Practical – 6 – Skill Training / Start up	-	-	9	6	40	60	100	4
	Core Enrichment 5: Project / Dissertation	_	_	20				300	14
			24	/25				400	19
	Part-II Total							400	19
						Total	Marks:	400	

It is expected that student should spend *4hrs each day for 6 days

Formation of Part-III

Course	Semester	Course /	Contact	No. of	Credit/	Total
Code		Component	Hrs	Courses	Course	Credits
400	A. Ability Enhancement Course (AEC)					
(i) Abi	ility Enhanc	ement Compulsory	Course (AEC	<i>C</i>)	Г	I
	I	AECCI: Introduction to SDG (online course)	-	1	Remarks	Audit Course
	I & II	AECC II: Environmental Conservation and Sustainable Development	1 Hr / Week / Semester	1	1+1	2
	I & II	AECC III: Human Values for Holistic Living	1 T + 2 Tu /Week /Semester	1	1+1+1	3
					Sub Total	5+ Audit course
(ii) Ski		nent Course (SEC)	<u> </u>		T	T
As per	Any Semester between II –V/VII	SEC-I *Value Added Courses	40 Hrs	1	1	1
common list	Any Semester between III – V/VII	SEC-II **Co- Curricular Course	80 to 120 Hrs	1	2	2
					Sub Total	3
		В. 1	Finishing School	ol		
		FS I to FS IV C		Earn Degree.		
	I	FS I: Student Induction Program	3 weeks Phase 1, Phase 2, Phase 3	-	Remark	Audit course
	Across I & II Semester s	FS II: Fundamentals of Design Thinking (Online/Offline)	40 to 60 Hrs	1	Remark	Audit course

	Semester s I to V / VII	FS III: Career Acceleration Programme – CAP (Placement Training)	2 Hrs / Week /Semester	As per syllabus	Remarks	Audit course
p S	Semester V (3 yrs program) Semester VI (4 yrs program)	FS IV: Community Engagement	Twice a month	1	Remarks	Audit course
]	FS V to FS VIII O	ptions for Adv	anced Learne	ers	
	Any semester from II to V/VII	FS V: Indian &Foreign Languages	-	Any number of courses	Remarks	Audit course
	Any semester from II to V/VII	FS VI: Any number of Online course(s) from select MOOC platforms	-	Any number of courses	Remarks	Credit as per provider/ audit course
	Any semester from III to V/VII	FS VII: Advanced Design Thinking	-	1	Remarks	Audit course
f	Any semester from I to VI/VIII	FS VIII: #Extra Credit Course Any number of courses from any UG program across the College	Self-study	Any number of courses	As per course offered	As per credit(s) earned across all courses opted
		J			Grand Total	

^{*}Value Added Courses - Option to student to choose at least 1 from a list of courses offered by any department across the Institution.

^{**}Co-Curricular Courses - Option to students to choose 1 from a list of courses offered by any department across the Institution.

[#] Student may opt for any course of the odd/even prevailing semester from any UG program across the

Institution with the following guidelines:

- a. Attending class not mandatory.
- b. May be mentored by the course teacher.
- c. Preparation through self-study.
- d. CIA not mandatory; evaluated for total marks at the end of the semester.
- e. Indicates options to appear for the course through examination application and payment of examination fees of that course.
- f. Credits earned through each course indicated in the consolidated mark sheet as extra credits; not included for CGPA, percentage marks and classification.

TOTAL MARKS & CREDIT DISTRIBUTION TO EARN THE DEGREE

S. No	PART	Total Marks	Total Credits	
1.	PART I: Language Course	400	12	
2.	PART II:	4000	128	
	Core, IDC, DSE, TDE	DC, DSE, TDE		
	PART III:			
3.	AECC-I, II & III	Remarks	08 + Credit audit	
3.	SEC- I & II	Kemarks	08 + Cledit audit	
	FS I, II, III & IV			
	TOTAL	4400	148	

VALUE ADDED COURSES (VAC) COURSES OFFERED BY THE DEPARTMENT

Sr. No.	Course Code	Course Title	Course Duration	Credits
1	21UMBVA01	Mushroom Cultivation	40 Hrs	1

Syllabus – Semester – II

Department: Microbiology Programme: B.Sc. Microbiology

Course Code	Course Title (F)	Credits
21UMBCC201	Core 3: Microbial Taxonomy and Diversity (F)	4 Credits

Course Description:

The world of microorganisms has great diversity in morphology, physiology, and anatomy among its members. This diversity can be put to beneficial use if studied and understood properly. This course will deal with the basic understanding of various groups of microorganisms, namely bacteria, fungi, algae, protozoa, and viruses, and the system adopted for their scientific classification, nomenclature and identification. The fundamental similarities and basic differences among these group of microbes will also be elucidated, and will be explained from the evolutionary point of view. The course is a fundamental nature for semester – II students who are entering into the wonderful world of microorganisms.

Course Objectives:

- 1. Identify major groups of microorganisms with respect to it's diversity that laid the groundwork for modern microbiology.
- 2. Understand the bacterial classification, characteristics of prokaryotic cells and eukaryotic cells and major groups of microorganisms.
- 3. Outline the structural and functional differences among all the microbes such as morphological features of bacterial cell and its organelles.
- 4. Understand the influence of microbes in their natural environments on maintenance of the nutritional requirements of microbes.
- 5. Explain the underlaying facts of identification and classification of microorganisms.

Course C	Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy			
		Level (K1 to K4)			
CO ₁	Identify the microorganism and their activities of the subject and interpret their benefits that laid the groundwork for modern microbiology.	K2			
CO ₂	Demonstrate and relate the characteristic features of prokaryotic and eukaryotic cells and major groups of microorganisms and diversity of microbial world with the identification and classification methods of microorganisms.	K2			

CO ₃	To relate and describe the flow of structural and functional	K2
	differences among all the microbes and their nutritional	
	requirements for the microbial growth.	
CO ₄	Identify the influence of microbiology and 21st century challenges	
	and opportunities that arise from our changing relationship with	K2
	and understanding of microbes.	
CO ₅	Relate the science of microbes and the social issues and concerns	
	relevant to the field of microbiology.	K2

Course Content	Hours
Unit. 1: Introduction to Microbial Diversity	10 hrs
 Introduction to Biodiversity- Microbial evolution and diversity, Types of diversity Microbial Taxonomy: Introduction and overview, Taxonomic ranks of microorganisms, Classification systems Major characteristics used in taxonomy Assessing Microbial Phylogeny The Major Divisions of Life 	
Unit. 2: Prokaryotic Diversity	10 hrs
 Introduction to Eubacteria Gram negative bacteria – General features of: Aerobic/Microaerophilic motile, helical vibroid Non-motile curved bacteria Aerobic/Microaerophilic rods and cocci Gram negative bacteria – General features of: Facultative anaerobes – rods, curved and helical bacteria Dissimilatory Sulphate reducers Gram negative bacteria – General features of: Anaerobic cocci Phototrophic bacteria Gram positive bacteria – General features of: Endospore forming rods and cocci Asporogenous rods Mycobacteria and Actinomycetes 	
Unit 3: Diversity of some unusual Prokaryotes	10 hrs
 General Features of Bacteria with unusual morphology: Budding and appendaged bacteria Sheathed Bacteria Mycoplasma Bacteria with gliding motility, Rickettsia and Chlamydia 	

	1
• General Features of Bacteria of extreme environments:	
Introduction to Archaea	
o Thermophiles	
o Halophiles	
 Acidophiles 	
o Barophiles	
o Methanogens	
o Psychrophiles	
Unit. 4: Eukaryotic Diversity	10 hrs
Fungi: General characteristics – Definition, occurrence and structure of fungi	
Salient features and Economic importance of fungi	
• Algae: General Characteristics – Definition, Occurrence, Ultra- Structure,	
Reproduction	
Economic importance of Algae	
General Characteristics – Definition, Occurrence, Ultra- Structure, Reproduction	
and Economic importance of Protozoa	
Unit. 5: Akaryotic Diversity - Viruses	10 hrs
Introduction to Viruses: Definition, Historical background of virology,	
General features of viruses: Size, Capsids symmetry, Chemical Nature, Life cycle	
Overview of Bacterial Virus: T4 and Lambda	
Overview of plant Virus: TMV	
Overview of Animal viruses; HIV	

Text Books:

- Pelczar, M.J., Chan, E.C.S., Kreig, N.R. (1993). Microbiology, 5th Edition. New Delhi: Tata McGraw Hill Publishing Company Ltd.
- Presscott, M.J., Harley, J.P., Klein, D.A. (2002). Microbiology, 5th Edition, New York: WCB McGrawHill publication.

Reference Books:

- 1. Modi, H.A. Elementary Microbiology Vol -I, AktaPrakashan, Nadiyad.
- 2. Modi, H.A. Elementary Microbiology Vol-II, AktaPrakashan, Nadiyad.
- 3. Dubey, R.C.and Maheshwari, D.K., A Text Book of Microbiology, S. Chand Publications, New Delhi.
- 4. Tortora, Funke & Case. Microbiology-An Introduction, 8 Edition, Pearson Education, Delhi.

- 5. Powar and Daginawala, General Microbiology Vol-II. Himalaya Publishing House, Mumbai.
- 6. Atlas. R.M., Principles of Microbiology- 2nd Edition,

Pedagogic tools:

- Chalk and Board
- PPT and Videos.
- Assignment
- Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

- Bacterial Growth Curve Protocol | Protocols | Microbe Notes
- NPTEL :: Biotechnology Microbiology
- 9: Microbial Growth Biology LibreTexts
- Lecture notes, lecture 1 Micro Chapter The microbial world The microbes StuDocu

Suggested MOOCs

• General Microbiology - Course (swayam2.ac.in)

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
A	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
				Grand Total	30

Syllabus – Semester – II

Department: Microbiology Programme: B.Sc. Microbiology

Course Code	Course Title (F)	Credits
21UMBCC202	Core 4: Basic Biochemistry (F)	4 Credits

Course Description:

Basic Biochemistry is appropriate for students with some background in the fundamentals of biochemistry. This course introduces the basic structure and functions of elements of life and the biomolecules as well. From this subject student will be able identify the basic structure of monosaccharide, amino acids, nitrogenous base, and other polymeric forms of biomolecules like carbohydrates, proteins, lipids and nucleic acids through the lectures, group activities, class test and homework projects. after complications of this paper students can very well understand the basic properties and the importance of biomolecules in the biological system.

Course Objectives:

- 1. Understand the basics of structure of cellular matter, various types of reactions, pH scale and the special properties of water
- 2. Understand the structure of fundamental monosaccharide, its properties and polysaccharides
- 3. Understand the structures of amino acids, their chemical properties and their organization into polypeptides and proteins.
- 4. Understand structure and basic function of nucleotides
- 5. Understand structure of different classes of lipids and their roles in biological systems
- 6. Outline the chemical and physical properties of enzymes, mechanism of enzyme actions, factors affecting enzyme activity and enzyme synthesis.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy		
		Level (K1 to K4)		
CO ₁	Understand the basics of structure of cellular matter,	K2		
	various types of reactions,			
	pH scale and the special properties of water			
CO ₂	Understand and differentiate the structure and properties of	K2		
	fundamental monosaccharides,			
CO ₃	To relate and describe the flow of structural and functional	K2		
	differences among all the amino acids and proteins, for the			
	microbial growth.			
CO ₄	Identify the structure and basic function of nucleotides.			
	Understand structure of different classes of lipids and their	K2		
	roles in biological systems			
CO ₅	Outline the chemical and physical properties of enzymes			
	,mechanism of enzyme actions, factors affecting enzyme	K2		
	activity and enzyme synthesis.			

Course Content	Hours
Unit 1: Basic Biochemistry	12hrs
Introduction to Atoms, Elements & Molecules	
 Major Chemical bonds found in biological system: Ionic Bonds, Covalent Bonds, 	
Hydrogen Bonds, Van der Waals interactions, Hydrophobic interactions	
Introduction to pH	
Major Chemical reactions: Acid Base, Redox, Condensation-Hydrolysis Reactions	
Water and its important properties	
Unit 2: Carbohydrates	12hrs
Definition and Functions of Carbohydrates	
Classification of Carbohydrates	
Structure and properties of Monosaccharide	
Types and importance of Disaccharides	
Types of importance of Polysaccharides	

Unit 3: Proteins	12hrs
Definition and Functions of Proteins	
Classification of Proteins	
Amino acids: Classification	
Physical & Chemical Properties of Amino acids	
Structure of Proteins: Primary, Secondary, Tertiary & Quaternary Levels	
Unit 4: Lipids and Nucleic acids	12hrs
Definition, Functions and Classification of Lipids	
• Fatty acids: Structure and types, Introduction to phospholipids: Examples and	
Significance	
Introduction and Significance of Steroids	
• Introduction to Nitrogen Base, Nucleosides & Nucleotides, Structure of	
Deoxyribonucleic acid: A-DNA, B-DNA, Z-DNA	
Introduction to RNA & its types	
Unit 5: Enzymes	12hrs
Definition of Enzymes, Apoenzyme, Core Enzyme, Holo enzyme, Coenzyme,	
Cofactors,	
Prosthetic Groups, and Classification	
Mechanism of enzyme action – Active Sites, Activation Energy, Lock & Key	
Model, Induced Fit model	
Factors affecting enzyme activity	
Enzyme inhibition	
Phenotypic and genotypic regulation of Enzymes	

Text Books:

- 1. Atlas, R.M., Bartha, R. (1997). Microbial Ecology, 4th Edition: Benjamin Cummings publication (UNIT: 1)
- 2. Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. (2002) Microbiology. 5th Edition, Tata McGraw-Hill, New Delhi. (UNIT: 2 5)
- 3. Powar, C.B., Daginawala, J.F. (2010). General Microbiology Vol-I. Mumbai: Himalaya Publishing House. (UNIT: 2 5)

Reference Books:

- 1. Conn E.E., Stumpf P.K. (1989). Outlines ofBiochemistry. Wiley publication.
- 2. Stanier, R.Y. (1987). General Microbiology, 5th Edition: Macmillan publication.

- 3. Nelson, D.L., Cox, M.M. (2013). Lehninger: Principles of Biochemistry. W.H. Freeman publication.
- 4. Satyanarayan, U. (2008). Biotechnology. Kolkata, West Bengal: Books and allied (P) Ltd **Pedagogic tools:**
 - Chalk and Board
 - PPT and Videos.
 - Assignment
 - Class Activity: Think-Pair-Share / Class Test

Suggested reading / E-resources

- NPTEL :: Biochemistry
- Lecture notes
- Biochemistry free & easy. (kindle edition)
- Lippincott's illustrated q&a review of biochemistry. (kindle edition)

Suggested MOOCs

- Biochemistry Course (swayam2.ac.in)
- Food Microbiology and Food Safety Course (swayam2.ac.in)

Methods of assessing the course outcomes

Components of CIA: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
A	Test 1	1 st & 2 nd Units	$1^{1/2}$ hours	30	05
	Test 2	Units 3,4,5	3 hours	70	15
В	Assignment-1	Any topic from the syllabus	By the end of 8 th week	20	05
С	Assignment-2	Any topic from the syllabus	Before 2 nd CIA	20	05
				Grand Total	30

Syllabus - Semester - II

Department: Microbiology Programme: B.Sc. Microbiology

Course Code	Course Title (F)	Credits
21UMBCC102	Core 5: Cell Biology	4 Credits
	(F 2)	

Course Description:

This course covers study of structure and functions of prokaryotic and Eukaryotic cells. This course is segregated into different units elucidating cell theory, history of cell biology, cell evolution, prokaryotic cell structure and function, structure and functions of cellular organelles of eukaryotic cell, cell membrane structure, transport mechanism of macro and small molecules, cell cycle, and intercellular and intracellular transport.

Course Purpose:

This course aims to provide basic understanding of structure and functions of prokaryotic and eukaryotic cell. This is designed in such a way that learners will able to understand Historical developments of cell, cell theories and concepts; Cell structure and function of bacteria and archaea, Importance of membrane chemistry and regulation in cell communication; Intracellular signalling cascades and their impact on cellular activities, including cytoskeleton rearrangements and motility; Mechanisms of cell cycle stages and regulation; structure and functions of cellular organelles. This course will make students skilful in isolation and identification of gram positive and gram-negative bacteria, fungi, and microalgae; Staining and microscopic examination of cell and subcellular structures; Quantitative and qualitative estimation of cell components such as protein, carbohydrate and enzymes.

Course Outcomes: Upon completion of this course, the learner will be able to					
CO No.	Course Outcomes Statement	Blooms taxonomy Level (K ₁ to K ₆)			
CO ₁	Appreciate and understand the dynamic nature of the cell, including how it receives information and responds to its environment.	K2			
CO ₂	Comprehend various stages of cell cycle	K1			
CO ₃	Understand cellular transport mechanisms and how cellular organelles work and regulate biochemical synthesis in cell	K1			

CO ₄	Learn & Apply techniques of microscopic analysis of cell and cellular structures	K3
CO ₅	Learn & apply the methods of qualitative and quantitative estimation of protein, carbohydrate and enzymes	K2

Course Content	Hours
Unit-I: Cell theory and concepts	12 hrs
 Cell concept, principal levels of cellular organization History of cell biology Structural organization in Prokaryotes and Eukaryotes Eukaryotic cell: Animal and Plant cell Endosymbiosis: Chloroplast, Hydrogenosome and Mitochondria Unit-II: Prokaryotic cell: Structure and Functions 	12 hrs
 Bacterial cell wall: Structure and function Archaeal cell wall: Structure and function Ribosomes: Structure and function Capsule and spore: structure and function Plasmids in prokaryotes and their functions 	121
Unit-III: Eukaryotic cell: Structure and Functions	12 hrs
 Chloroplast: Ultrastructure and function Mitochondria: structure, morphogenesis, and functions Lysosomes, Peroxisomes and Glyoxisomes: Structure & functions Centrosomes, Centrioles, and Cytoskeletal elements Motility: Cilia and Flagella 	
Unit-IV: Cell wall, intercellular and intracellular transport	12 hrs
 Plant cell wall: its ultra-structure and function Intercellular transport: tight junction, intermediate junction, spot desmosome, gap junctions, plasmodesmata Endoplasmic reticulum: structure and function Golgi apparatus: structure and function GERL system and its role in intra-cellular secretion 	
Unit-V: Cell Membrane structure, Transport and Cell cycle	12 hrs
 Models of cell membrane Structural organization of plasma membrane – Fluid Mosaic Model Cellular transport of small molecules: Active and Passive Transport Cellular transport of Macromolecules: Endocytosis, Receptor mediated endocytosis, Pinocytosis and exocytosis Cell Cycle and Cell Division – Mitosis and Meiosis 	

Text Books:

- 1. De Robertis, EDP, De Robertis EMF. (2006). Cell and Molecular Biology, 8^{th} edition. Philadelphia: Lipincott Williams and Wilkins. (UNIT: 1-5)
- 2. Verma, P.S., Agrawal, V.K. (2005). Ecology, Cell Biology, Molecular Biology, Genetics. New Delhi: S. Chand and Company Limited. (UNIT: 1-5)

Reference Books:

- 1. Presscott, M.J., Harley, J.P., Klein, D.A. (2002). Microbiology, 5th Edition. New York: WCB Mc GrawHill publication.
- 2. Stanier, R.Y. (1987). General Microbiology, 5th Edition: Macmillan publication.
- **3.** Tortora, G.J., Funke, B.R., Case, C.L. (2008). Microbiology, 8th Edition: McGraw Hill Company.

Pedagogic tools:

- Chalk and Board
- Power point presentation
- Video
- Seminars

Methods of Assessment & Tools:

Components of CIE: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
A	Test 1	1 st 2 units	1 ^{1/2} hours	5 (Set for 30)	20
	Test 2	All 5 units	3 hours	15 (Set for 70)	
В	Assignment			04	10
C	Class activity			06	
				Grand Total	30
Assignn	Assignment • Power point presentation of given topic • Chart preparation				
 Class activity Quiz Class Test Seminars Group Discussion 					

Note: Any other assessment tools or methods can be adopted as per requirement of the course

Syllabus - Semester - II

Course Code	Course Title (F)	Credits
21UMBCC204	Core Practical - 2:	2 Credits
	Microbial Diversity and Biochemistry	

Course Description:

This course covers the study of isolation and laboratory cultivation of some major groups of microorganisms, like bacteria, fungi, and virus as well as microscopic observation of algae and protozoa from natural sample. The course also involves the basic analytical techniques for the qualitative and quantitative estimation of biomolecules. Microscopic observation of some intracellular organelles also makes a major part of the course.

Course Purpose:

This course aims to provide basic understanding of isolation and cultivation techniques to help student understand the growth characteristics of different microorganisms. The course is designed in such a way that learners will be able to understand the use of various methods of microbial identification, especially by biochemical and morphological methods. Microscopic observation and study of microbial morphology and cellular structure will enable students to identify and distinguish microbes on the basis of morphology and colony characters. This course will also make students skilful in qualitative and quantitative estimation of various biomolecules. Further it will also facilitate students to understand the sub-cellular organelles by microscopic observation of cells.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	Course Outcomes Statement	Blooms taxonomy Level (S ₁ to S ₆)		
CO ₁	Understand the methods of isolation of different groups of microorganisms	S1		
CO ₂	Comprehend principle and procedure of identification of bacteria using various biochemical media	S1		
CO ₃	Analyse the qualitative and quantitative aspect of biomolecules using analytical techniques.	S1		
CO ₄	Learn & Apply techniques of microbial characterization using morphological features seen under microscope	S3		
CO ₅	Learn & apply the methods of microbial identification	S2		

Sr. No.	Experiment				
1	Isolation of Gram negative bacteria from the given sample.				
2	Identification of Gram negative bacteria from the given pure culture using				
	biochemical media (E.coli, Enterobacter aerogens, Proteus, Salmonella)				
3	Isolation of Gram positive bacteria from the given sample.				
4	Identification of Gram positive bacteria from the given pure culture using biochemical				
	media (Bacillus megaterium, Bacillus subtilis, Staphylococcus aureus)				
5	Identification of Fungi on the basis of Morphological Characteristics.				
6	Cultivation of yeast from different natural samples and its morphological				
	characterization using microscopic observation.				
7	Microscopic observation of different algae from the given samples.				
8	Microscopic observation of different protozoa from the given sample.				
9	Isolation and cultivation of bacteriophage of <i>E.coli</i> from the given sewage sample.				
10	Estimation of Protein by Foiln-Lowry's Method.				
11	Estimation of Sugar by Cole's Method.				
12	Estimation of Reducing sugar by DNSA method				
13	Estimation of DNA by DPA Method.				
14	Qualitative Analysis of Carbohydrates.				
15	Qualitative Analysis of Proteins & Amino acids.				
16	Determination of alpha amylase activity by iodometric method.				
17	Demonstration and study of various phases of mitosis and meiosis				
18	Microscopic observation of plant cells from onion				
19	Microscopic observation of Barr bodies and Drum stick				
20	Mitochondrial staining				

Reference Books:

Reference Books:

- 1. Jayaraman, J. (2011). Laboratory Manual in Biochemistry: New Age International Private Limited. India
- 2. Sawhney S.K., Singh, R. (2005). Introductory Practical Biochemistry: Alpha Science International.
- 3. Cappuccino, J.G., Sherman, N. (2004). International student edition: Microbiology- A laboratory Manual 4th edition: Benjamin Cummings publications

Pedagogic tools:

- Chalk and Board
- Power point presentation
- Video

Methods of Assessment & Tools:

Components of CIE: 40 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
A	Test	After the completion of 60-70% of the performance practical	6 hrs (3 hrs on Day – 1 and 3 hrs on Day – 2)	30	30
В	Laboratory book and Journal	-	-	10	10
				Grand Total	40

DEPARTMENT OF MICROBIOLOGY

PART III – SEC – III VALUE ADDED COURSE

(To be offered from Semester -II - V)

21UAEVA01	Mushroom Cultivation	40 hrs Duration	2 Credits
-----------	-----------------------------	--------------------	-----------

Course Profile:

Once called "Food of the Gods", edible Mushrooms are still treated as a garnish or delicacy and can be considered as healthy food rich in crude fiber, protein, low fat, low calories, high content vitamins, and mineral. Mushrooms also possess multi-functional medicinal properties. Mushroom cultivation technology is environmentally friendly as many organic waste and refuse can be used for this purpose. The potential of mushroom farming in generating new employment opportunities is another positive element emanating from mushroom farming ventures. The course aims at developing skills and making the students become self-reliable and employable besides giving them an edge to become entrepreneur. That is, when students pass out of the college with their degrees, they also are equipped with additional skills to meet the challenges in future.

Employment Opportunities:

a. Job Prospects:

- 1. Lab assistant in mushroom labs.
- 2. Mushroom marketer in a industry
- 3. Mushroom lab equipment operator in a lab.
- 4. Mushroom spawn producer in a lab.
- 5. Mushroom processor in a farm.

b. Entrepreneur:

- 1. Mushroom spawn produce
- 2. Mushroom grower (crop producer),
- 3. Mushroom marketer
- 4. Mushroom processor.

Duration of course:

The course shall be conducted in batches for 40 Hours as per the declared schedule as and when a batch is filled up. Students may opt to enrol anytime of their study from the II to V semesters.

Examinations:

The course carries 2 credits and the students will be evaluated on the basis of their performance in skill development and learning through regular practicals, assignments, field trips, group projects and tests. The pattern of evaluation will be 100% internal.

Certificates will be issued by the Autonomous College to the candidates on successful completion of the Course.

Course Objectives:

The Course is designed:

- To enable the students to identify the edible and poisonous mushrooms.
- To provide hands-on training for the preparation of bed for mushroom cultivation and it's harvesting, pests and diseases control and post harvesting management.
- To provide the students awareness about the marketing trends of Mushrooms.
- To help the students to learn a means of self-employment and income generation.

UNIT I: Introduction 10hrs

- Introduction: General History, edible mushrooms, mushrooms with medicinal importance and poisonous mushrooms.
- Common Indian mushrooms.
- Nutritional value, medicinal value and advantages.
- Systematic position, morphology, distribution, structure and life cycle of *Agaricus*.

UNIT II: Basics of Mushroom Cultivation

10hrs

- Fundamentals of cultivation system- small village unit & larger commercial unit.
- Principles of mushroom farm layout- location of building plot, design of farm, bulk chamber, composting platform, equipments & facilities, pasteurization room & growing rooms.
- Cultivation: Paddy straw mushroom substrate, spawn making.
- Methods bedmethod, polythene bag method, field cultivation.
- Oyster mushroom cultivation Substrate, spawning, pre-treatment of substrate.

UNIT III: Post Cultivation process

10hrs

- Maintenance of mushroom.
- Diseases- Common pests, disease prevention and control measures.
- Processing Blanching, steeping, sun drying, canning, pickling, freeze drying.
- Storage short term and long term storage.

UNIT IV: Economics of Mushroom Cultivation

10hrs

• Production level, economic return, Foreign exchange from Mushroom cultivating countries and international trade.

Practical

- 1. Identification of Edible and poisonous mushrooms
- 2. Microscopic observations of mushrooms
- 3. Cultivation of mushrooms at laboratory level

Text Books

- 1. Harander Singh. 1991. Mushrooms- The Art of Cultivation- Sterling Publishers.
- 2. Kaul, T.N. (1997). Introduction to Mushroom Science (Systematics). Oxford & IBH Publishing Co. Pvt. Ltd. New Delhi & Calcutta, India.
- 3. Vijaya Khader (1998). Mushrooms for Livelihood. Kalyani Publishers, Ludhiana, India.

Reference books

- 1. Mushroom Production and Processing Technology, Pathak Yadav Gour (2010) Published by Agrobios (India).
- 2. Singh, Reeti and Singh, V.C. (2005). Modern Mushroom Cultivation. Agrobios, India.
- 3. Suman, B.C. and Sharma, V.P. (2005). Mushroom Cultivation and Uses. Agrobios, India.