

Sarvodaya Kelavani Samaj managed, Shri Manibhai Virani and Smt. Navalben Virani Science College (Autonomous)

(Affiliated to Saurashtra University, Rajkot)

Re-Accredited at 'A' Level by NAAC
STAR college Scheme & Status by MST-DBT
UGC-College with Potential for Excellence (CPE)
UGC-DDU KAUSHAL Kendra

GAAA –Grade A-1 by KCG, Government of Gujarat GPCB-Government of Gujarat approved Environment Audit Center Nodal Center for capacity building by GSBTM

B.Sc. Chemistry

DSE 2 (Cluster):

Discipline Specific Elective Cluster (DSE-C) For the students admitted from A.Y. 2021-2022 & onwards				
Offering Department: Offered to: Other B.Sc. Program				
Chemistry				
Semester – IV				
Course Code	Course Title	Course Credit and Hours		
	DSE 2 (Cluster):	4 Credits - 3 hrs/wk		
	Conceptual Analytical & Physical			
	Chemistry			

Course Description:

This course provides a systematic study of the theories, principles and its application related to the chemistry. Topics include, thermodynamic reactions and the effect of various functional. It also covers the concepts of chemical kinetics, types of electrode and its application. The course aims to address SDG No-4: Quality education.

Course Purpose:

This course aims to provide profound understanding of various terminologies related to the acid and base. It also provides concepts of various modes of concentration of solution. This course also provide various parameters of thermo chemistry. This is intended in such a way that students will be able to learn various methods of determining rate of reaction in chemical kinetics and its application.. This course also gives basic information about surface chemistry.

Course Outcomes: Upon completion of this course, the learner will be able to			
CO No.	CO Statement	Bloom's taxonomy Level(K1 to K6)	
CO ₁	Distinguishing various types of concentration of aqueous solutions and apply it in the acid-base chemistry.	K ₄	
CO ₂	Recognize concepts of thermodynamics and thermo chemistry.	K ₂	
CO ₃	Use concept of chemical kinetics and interpretation of rate of reaction by different methods.	K ₃	
CO ₄	Execute the fundamentals of electrochemistry in various application.	K ₃	
CO ₅	Understand basics of surface chemistry	K ₂	

Course Content	Hours	
Unit -1: Introduction of Acid-Base and Types of Concentration	12hrs	
Acid- Base & Buffers		
 Introduction Strong and weak electrolytes Degree of ionization Ionic product of water Ionization of weak acid and weak base pH scale Common ion effect Chemistry of Buffers Determination of pH of buffer by Henderson equation 		
Modes of Concentration		
 Introduction Determination of Molecular weight and eq. weight Different modes of concentration - Normality, Molarity, Molality, Mole fraction,% W/W ,% W/V,% V/V, ppm Numericals 		
Unit – 2: Fundamentals of Thermodynamics and Thermo Chemistry	12hrs	
Thermodynamics		
 Introduction System, surrounding, types of system Thermodynamic processes, Macroscopic properties State function & Path function Concept of Heat & work Zeroth law (Statement & Mathematical expression) First law (Statement & Derivation) 		
 Thermo Chemistry Exothermic and endothermic reactions Heat of reaction: Combustion, Solution, Neutralization, Vaporization, Sublimation, Transition Bond dissociation energy Hess's law 		
Unit – 3: Concepts of Chemical Kinetics	12hrs	
 Introduction Reaction rate, Order and Molecularity of reaction Derivation, Characteristics, Half life time & Examples Zero order reaction First order reaction 		

M.41 - 1 C - 1.4 4 1	1
Method for determining the order of reaction:	
Graphical method	
Ostwald's isolation method	
Method of half-life period	
➤ Integration method	
Energy of Activation and catalysis	
Numerical	
Unit -4:Introduction to Electrochemistry	12hrs
Introduction	
Reversible and Irreversible cell	
Type of electrodes	
Measurement of EMF of cells	
• Thermodynamics of electrode and cell potentials – Nernst	
equation	
Standard electrode potential & measurement	
Unit – 5: Surface Chemistry	12hrs
Adsorption	
• Introduction	
• Concepts	
Adsorption, Absorption, Adsorbate, Adsorbent, Sorption,	
Desorption	
Types of Adsorption	
Physisorption & Chemisorption	
Adsorption isotherm	
Langmuir Adsorption	
Freundlich isotherm	
• Applications	
Catalysis	
• Introduction	
Types of catalyst & catalysis	
• Theory of catalysis	
Theory of catalysis	
➤ Acid base catalysis	

Pedagogic Tools:

- Chalk and Talk
- PPT and Videos.
- Assignment
- Group discussion

Text Books:

• Bahl, Arun; Bahl, B. S.; Tuli, G. D. (2020, 28th edition) Essential of Physical Chemistry. New Delhi: S. Chand (ISBN No978-9352836093).

Reference Books:

- Negi, A. S.; Anand, S. C. (2007, 2ndedition) A Textbook of Physical Chemistry. New Delhi: New age International Publisher (ISBN: 81-224-2005-0).
- Peter Atkins; Julio de Paula (2018, 11th edition) Atkin's Physical Chemistry.Oxford: Oxford University Press (ISBN: 978-0198814740
- Christian, Gary D.; Dasgupta, Purnendu K.; Schug, Kevin A. (2020, 6th edition) Analytical Chemistry. Hoboken: Wiley-Blackwell Science Ltd. (ISBN: 978-9388991094).

Suggested reading / E-resources:

- 1. https://www.extension.harvard.edu/academics/courses/introduction-chemistry
- 2. https://libguides.reading.ac.uk/chemistry/e-resources
- 3. https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=5
- 4. http://library.iiti.ac.in/

Suggested MOOCs:

1. https://swayam.gov.in/nc_details/NPTEL

Methods of assessing the course outcomes

Components of CIA: 40 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
A	Test 1	1 st 2 units	1 ^{1/2} hours	5 (Set for 30)	20
	Test 2	All 5 units	3 hours	15 (Set for 70)	
В	Assignment			10	20
С	Class activity			10	
	l	1		Grand Total	40
Assignment		Case sConceStuderEssay	act and executive summer study writing ept mapping and generated handbook writing etc	·	
Class activity		PreserSeminQuiz	ntation (PPT, Poster, C nar	hart)	

•	Model Making
•	Think Pair Share
•	Free writing
•	Class test
•	Debate/ Group Discussion
•	Open Book Test

Note: Any other assessment tools or methods can be adopted as per requirement of the course.