Annexure-III

Sarvodaya Kelavani Samaj managed, Shri Manibhai Virani and Smt. Navalben Virani Science College

(Autonomous)

(Affiliated to Saurashtra University, Rajkot)

Re-Accredited at 'A' Level by NAAC STAR college Scheme & Status by MST-DBT UGC-College with Potential for Excellence (CPE) UGC-DDU KAUSHAL Kendra GAAA –Grade A-1 by KCG, Government of Gujarat GPCB-Government of Gujarat approved Environment Audit Center Nodal Center for capacity building by GSBTM

Department of Chemistry

B.Sc. Chemistry

Syllabus

Semester-I

Discipline Specific Course- Core-1 For the students admitted from A.Y. 2021-2022 & onwards					
Offering Department:	Offered to: B.Sc. Chemistry				
Chemistry					
	Semester - I				
Course Code Course Title Course Credit and Ho					
21UCHCC101Introductory Inorganic and Analytical Chemistry (F)4 Credits - 4 H					

Course Description:

This course gives an introduction to inorganic and analytical chemistry and an overview of important analytical methods and their range of application within detection of inorganic and organic compounds. It also explain the theoretical principles and important applications of classical analytical methods within titration (acid/base titration, complexometric titration, redox titration), and various techniques within gravimetric and volumetric methods which helps in evaluation/interpretation of results. This course also reinforces the basic understanding of Bond theory: Atomic orbitals importance for chemical bonding, covalent bonding, ionic and lattice enthalpy, metal bonding, metals, etc. The course aims to address SDG No-4: Quality education.

Course Purpose:

This course aims to provide fundamental knowledge of structure of atom, bonding, periodicity of elements which involves the molecular behavior of compounds in relation with their atomic bonding and electronic forces. This course is sketched in such a way that students will able to understand the rudimentary scientific skill of planning, conducting, reviewing and reporting experiments of qualitative & quantitative chemical analysis.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)		
CO ₁	Remember basic idea of structure of atom and its mechanics.	K1		
CO ₂	Understand the periodic properties, shape, geometry of various elements and their compound.	K2		
CO ₃	Apply basic knowledge and predict the properties of the main block element.	K3		
CO ₄	Correlate and Compare various methods for preparations of different concentrated solutions.	K2,K3		

CO ₅	Understand and apply knowledge of acid base, redox and non-	K2,K3
	aqueous titration.	

Course Content	Hours
Unit-I : Structure of Atom	12hrs
Atomic Structure & Wave mechanics:	
 Quantum numbers Shape of orbitals Principles of Electronic configuration: AufBau, Pauli, Hund De-Broglie's dual nature equation Heisenberg's uncertainty principle & its significance Significance of ψ and ψ² Schrodinger wave equation Normalized and orthogonal wave function Eigen function and Eigen value Postulates of wave mechanics Radial and angular distribution curves Radial and angular wave function for hydrogen atom 	
Unit-II: Properties of Elements	12 hrs
 Periodic Properties Various periodic trends in periodic table Atomic radius Ionic radius – Effective nuclear charge Pauling's method for the determination of ionic radius Ionization energy Electron affinity Electron affinity Slater's rule Chemical Bonding Introduction Types of Bonds: Co-ordinate Covalent Ionic Metallic Vander Waal's Forces Hydrogen Bond Hybridization: Sp. sp², sp³, sp³d, sp³d², sp³d³ Valence bond theory and its limitations VSEPP theory (Sidqwick- Powell rule) and geometries of molecules 	

Unit- III: Chemistry of Elements-I	10 hrs
Chemistry of Main block elements	
 Introduction Inert pair effect Relative stability of different oxidation states Diagonal relationship and anomalous behavior of Li and Mg Allotropy and catenation Structure, preparation and properties of some compounds Clathrates Preparation and properties of Xenon compounds Applications 	
Unit- IV: Fundamentals of Analytical Chemistry – I	12 hrs
 Qualitative Analysis and Quantitative Analysis: Introduction Types of Quantitative Analysis: Gravimetric Analysis, Volumetric Analysis. Solubility product Common ion effect H₂S scheme, NH₄Cl & NH₄OH scheme Borax bead test, Charcoal test, Cobalt nitrate test & Flame test Separation of negative radical in presence of each other Modes of Concentration: Introduction Solution : Solvent, Solute Determination of Molecular weight and eq. weight, Empirical formula Different modes of concentration: Normality, Molarity, Molality, Mole fraction,% W/W,% W/V,% V/V, ppt, with numerical 	
Unit- V: Fundamentals of Analytical Chemistry – II	14 hrs
 Acto- Base & Buffers Introduction Strong and weak electrolytes Degree of ionization Ionic product of water Ionization of weak acid and weak base pH scale Salt hydrolysis Calculation of hydrolysis constant & degree of hydrolysis and pH of different salts Chemistry of buffer Determination of pH of Buffer by Henderson equation Acid- Base , Redox & Non- aqueous Titrations 	

- Introduction
- Acid Base Titrations :
 - Weak acid v/s Strong base
- Redox titration :
 - ➢ Oxalic acid − KMnO₄
 - Iodo & Iodimetric
- Non-aqueous Titrations:
 - > Types
 - Application

Pedagogic Tools:

- Chalk and Talk
- PPT and Videos.
- Assignment
- Group discussion

Text Books:

- 1. Puri, B. R.; Sharma, L. R. &Kalia, K. C. (2017, 33rd edition) *Principles of Inorganic Chemistry*. New Delhi : Milestone (ISBN No. 978-8192143330).
- 2. Bahl, Arun; Bahl, B. S.; Tuli, G. D. (2020, 28th edition) *Essential of Physical Chemistry*. New Delhi : S. Chand (ISBN No.978-9352836093).

Reference Books:

Inorganic Chemistry

- Madan, R. L. (2011, 3rd edition) *Chemistry for degree student First year*. New Delhi: S. Chand (ISBN: 978-8121932301).
- 2. Lee, J. D. (2008, 5thedition) *Concise Inorganic Chemistry*. Hoboken: Wiley-Blackwell Science Ltd. (ISBN: 978-8126515547).
- Peter Atkins, Tina Overton, JonarthanRourke, Mark Weller & Fraser Armstrong (2010, 5thedition) *Inorganic Chemistry*. Oxford: Oxford University Press (ISBN: 978-0-19-959960-8)

Analytical Chemistry

- 1. Douglas A. Skoog, West, Holler, Crouch (2004, 8thedition) *Fundamental of Analytical Chemistry*. Mexico: Thomson-Brooks/Cole (ISBN: 81-315-0051-9).
- 2. Sharma, B. K. (2014) *Instrumental Method of Chemical Analysis*. Meerut: GOEL publishing House (ISBN: 978-81-8283-099-8).
- Christian, Gary D.; Dasgupta, Purnendu K.; Schug, Kevin A. (2007, 6th edition) *Analytical Chemistry*. Hoboken: Wiley-Blackwell Science Ltd. (ISBN: 978-81-265-1113-6).

Suggested reading / E-resources:

1. https://www.extension.harvard.edu/academics/courses/introduction-chemistry

- 2. https://libguides.reading.ac.uk/chemistry/e-resources
- 3. <u>https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=5</u>
- 4. <u>http://library.iiti.ac.in/</u>

Suggested MOOCs:

1. https://swayam.gov.in/nc_details/NPTEL

Methods of assessing the course outcomes

Components of CIE: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st 2 units	1 ^{1/2} hours	5 (Set for 30)	20
	Test 2	All 5 units	3 hours	15 (Set for 70)	
В	Assignment			05	10
С	Class activity			05	
		<u> </u>		Grand Total	30
 Abstract and executive summary Case study writing Concept mapping Student generated handbook Essay writing etc 			ary		
 Presentation (PPT, Poster, Chart) Seminar Quiz Model Making Think Pair Share Free writing Class test Debate/ Group Discussion Open Book Test Class test 					

Note: Any other assessment tools or methods can be adopted as per requirement of the course.

Discipline Specific Course- Core-2					
For the students admitted from A.Y. 2021-2022 & onwards					
Offering Department:	ering Department: Offered to: B.Sc. Chemistry				
Chemistry					
	Semester - I				
Course Code Course Title Course Credit and Ho					
21UCHCC102	Introductory Organic and Physical Chemistry (F)	4 Credits - 4 hrs/wk			

Course Description:

This course provides a systematic study of the theories and principles of organic chemistry & Physical Chemistry. It includes nomenclature, structure, properties and reactions-mechanisms of organic compounds. It also covers concept of isomerization and stereochemistry. This course also deals with the core area of physical chemistry based around the themes of systems, states and processes. This course will also discuss the characteristics of the ideal gas, the concept of the ideal gas law, the behavior of gases under many different conditions. The course aims to address SDG No-4: Quality education.

Course Purpose:

This course aims to provide basic understanding of the core area of Organic chemistry and physical chemistry. This is designed in such a way that students will able to understand the necessary background of carbon-containing compounds. Students will be able to analyze the properties and reactions of organic compounds. A good understanding of physical chemistry is important to students intending to complete a major or minor study in chemistry. This course is necessary to provide maturity and thinking ability of students which build up their career.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K ₁ to K ₆)		
CO ₁	Recognize the basic concept of organic chemistry for a chemical reaction.	K2		
CO ₂	Distinguish between different kinds of isomers and Able to Predict the stereochemistry of organic compound.	K2,K3		
CO ₃	Remember nomenclature and understand the properties of organic compound.	K1, K2		

CO ₄	Understand the principles of kinetics and mechanisms of surface reactions.	K2
CO5	Memorize gaseous laws and exploring the way solid, liquid and gases change under different situation.	K1, K3

Course Content	Hours
Unit-I : Fundamentals of Organic Chemistry	12 hrs
Basics of Organic compounds	
 Organic compounds: Classification Functional groups Nomenclature 	
• Hybridization	
 Bond Fission : Homolytic and heterolytic bond fission Curly arrow rules Nucleophile, Electrophile, Free Radical Electronic Displacement Effects : Inductive effect, Electromeric effect Resonance (Mesomeric) effect Hyper conjugation Reactive Intermediates: Carbcation Carbanion Carbon free radical Introduction to types of organic reactions: Addition Elimination Substitution 	
	10.1
Unit-II: Alkanes & Cyclo alkanes	
Alkanes	
 IUPAC nomenclature Preparation Wurtz reaction Kolbe Corey house Classification of Carbon atoms 	

Physical properties		
Chemical properties		
• Free radical substitution reaction		
Cyclo alkanes		
• Nomenclature		
Methodes of preparation		
Physical properties		
Chemical properties		
• Bayer's stain theory		
Unit- III: Stereochemistry	12 hrs	
Basics of Stereochemistry		
Introduction		
Classification		
• Isomerism		
Chirality/Asymmetry		
Meso Compounds		
Enantiomer & Diastereomer		
• Molecules with Two or more chiral centre		
Optical activity & Specific rotation		
Racemic mixture & Resolution		
Projection:		
Wedge- Dash Formula		
 Fischer projection 		
Newmann		
 Sawhorse projection 		
• Relative and Absolute configuration :		
D/L Configuration		
R/S Configuration & CIP rules		
Geometrical Isomerism:		
\succ Cis – Trans		
\blacktriangleright Syn – Anti		
➢ E-Z		
Conformational Analysis of alkanes:		
Ethane		
> Butane		
Unit- IV: Gaseous State & Thermodynamics	12 hrs	

Page 9

Gaseous state

- Introduction
- General characteristics of gases
- Kinetic Molecular theory
- Graham's law of diffusion
- Deviation from ideal behavior
- Vander Waal's equation
- Method of Liquefaction of gases
- Numericals

Thermodynamics – 1

- Introduction
- System, surrounding, types of system
- Thermodynamic processes & Macroscopic properties
- State function & Path function
- Heat & work
- Zeroth law
- First law

Thermo chemistry :

- Exothermic and endothermic reactions
 Heat of reaction: Combustion, Solution, Neutralization, Vaporization, Sublimation, Transition
- Hess law

Unit- V: Surface chemistry

Surface Phenomena and Catalysis

- Introduction
- Types of Adsorption
- Difference between Physisorption & Chemisorption
- Adsorption isotherm
 - Langmuir Adsorption
 - ➢ Freundlich isotherm
- Applications

Catalysis

- Introduction
- Types of catalyst & catalysis
- Characteristics of catalyst
- Nobel catalyst
- Loded catalyst
- Formulated catalyst

Basic Physical Properties

Shri M. & N. Virani Science College (Autonomous), B. Sc. Chemistry, BoS 30/06/2021

14 hrs

- Introduction
- Classification of physical properties :
 - Additive property
 - Constitutive property
 - Additive Constitutive property
- Surface tension
- Dipole moment
- Viscosity

Pedagogic Tools:

- Chalk and Talk
- PPT and Videos.
- Assignment
- Group discussion
- Seminar

Text Books:

- 1. Bansal, Raj K. (2009, 5th edition) *A Textbook of Organic Chemistry*. New Delhi: New Age International (ISBN: 978-81-224-2025-8).
- Bahl, Arun; Bahl, B. S.; Tuli, G. D. (2009, 2nd edition) *Essential of Physical Chemistry*. New Delhi : S. Chand (ISBN No. 81-219-2978-4)

Reference Books:

Organic Chemistry

- 1. Ahluwalia, V. K. (2011, 4thedition) *Organic Reaction Mechanism*. New Delhi: Narosa (ISBN: 978-81-8487-115-9).
- 2. T.W. Graham Solomons (2011, 10thedition) *Organic Chemistry*. Hoboken: John Willey & Sons (ISBN: 978-0-470-55659-7).
- 3. Clayden, Greeves, Warren &Wothers (2012, 2nd edition) *Organic Chemistry*. Oxford: Oxford University Press (ISBN: 9780199270293).

Physical Chemistry

- 1. Negi, A. S.; Anand, S. C. (2007, 2ndedition) *A Textbook of Physical Chemistry*. New Delhi: New age International Publisher (ISBN: 81-224-2005-0).
- 2. Peter Atkins; Julio de Paula (2018, 11th edition) *Atkin's Physical Chemistry*.Oxford: Oxford University Press (ISBN: 978-0198814740).
- 3. ArunBahl; B.S. Bahl (2009, 1stedition) *Numerical Problems in Physical Chemistry*. New Delhi: S. Chand (ISBN: 81-219-3084-7).

Suggested reading / E-resources:

- 1. https://www.extension.harvard.edu/academics/courses/introduction-chemistry
- 2. <u>https://libguides.reading.ac.uk/chemistry/e-resources</u>
- 3. <u>https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=5</u>
- 4. <u>http://library.iiti.ac.in/</u>

Suggested MOOCs:

1. <u>https://swayam.gov.in/nc_details/NPTEL</u>

Methods of assessing the course outcomes

Components of CIE: 30 marks

Sr. No.	Component	Content	Duration (if any)	Marks	Sub Total
А	Test 1	1 st 2 units	$1^{1/2}$ hours	5 (Set for 30)	20
	Test 2	All 5 units	3 hours	15 (Set for 70)	
В	Assignment			05	10
С	Class activity			05	
				Grand Total	30
 Abstract and executive summary Case study writing Concept mapping Student generated handbook Essay writing etc 					
 Presentation (PP Seminar Quiz Model Making Think Pair Share Free writing Class test Debate/ Group I Open Book Test Class test 			ntation (PPT, Poster, Ch ar l Making Pair Share vriting test e/ Group Discussion Book Test test	art)	

Note: Any other assessment tools or methods can be adopted as per requirement of the course.

Discipline Specific Course- Core Practical-1

For the students admitted from A.Y. 2021-2022 & onwards

Offering Department: Chemistry	Offered to: B.Sc. Chemistry			
Semester - I				
Course Code	Course Title	Course Credit and Hours		
21UCHCC103	Combined Practical	4 Credits - 12 hrs/wk		

Course Description:

This course contains important aspects of qualitative analysis as well as quantitative analysis in chemistry through experiments. It provides the analysis of basic physical properties of various organic and inorganic compounds. The courses illustrate study of calibration of instrument and volumetric glassware, preparation & standardization of analytical solutions, volumetric analysis along with gravimetric Analysis. The course aims to address SDG No-4& 9: Quality education& Industry, innovation and Infrastructure.

Course Purpose:

The general intention of the practical course is that the students will get familiar with experimental procedures in a chemical laboratory. This course is outline in such a way that students will be capable to accomplish various types of Volumetric Analysis and Gravimetric Analysis. Student will learn many experimental techniques and they will be capable to observe the experiments, by which they can write accurate analysis and results. Students will be proficient to quantify and analyze various physical properties of organic and inorganic compounds. This course is necessary to provide the practical knowledge and laboratory techniques to students in the field of chemistry.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)		
CO ₁	Identify one cation and anion in a given unknown inorganic salt and record observation and write laboratory reports according to disciplinary standards.	K1		
CO ₂	Built ability for summarization and determination of basic physical properties.	K2		
CO ₃	 J3 Illustrate scientific skills in understanding, planning and preparing various organic reagents and solutions. 			
CO ₄	D ₄ Understanding the scientific methods for calibration of the glassware's and instruments.			
CO ₅	Understanding, planning and performing experiments for preparation and standardization of analytical solutions.	K2, K3		

Course Content	Hours
Analytical chemistry (15 – 17 experiment)	
 Calibration of Volumetric Glassware-Burette, pipette, measuring flask, measuring cylinder, etc. Preparation of Solution: Saturated sodium bicarbonate 20% NaOH 50% HCl Preparation & Standardization of Analytical Solution:- 	
 To prepare and standardize 0.1 N NaOH solution using 0.1 N succinic acid solution. To prepare and standardize 0.1 M HCl solution using anhydrous sodium carbonate. To prepare and standardize 0.02 M KMnO₄ solution using f 0.1 N Oxalic acid. To prepare and standardize 0.01 N iodine solution using 0.01 N Na₂S₂O₃.5H₂O solution. 	
Volumetric analysis:-	
Acidimetry and alkalimetry:-	
 To determine Normality, Molarity and g/liter of xN NaOH by using 0.1N HCl solution. To determine Normality, Molarity and g/liter of NaOH and HCl by using 0.05 M Na₂CO₃ solution. To determine Normality, Molarity and g/liter of each component in a given mixture of NaHCO₃ and Na₂CO₃ by using 0.1 M HCl solution. 	
Redox titrations:-	
• To determine Normality, Molarity and g/liter of each component in a given mixture of H ₂ C ₂ O ₄ .2H ₂ O and H ₂ SO ₄ by using 0.02 M KMnO ₄ and 0.1 M NaOH solution.	
• To determine Normality, Molarity and g/liter of each component in a given mixture of H ₂ C ₂ O ₄ .2H ₂ O and K ₂ C ₂ O ₄ .H ₂ O by using 0.02 M KMnO ₄ and 0.1 M NaOH solution.	
 To determine Normality, Molarity and g/liter of KMnO₄ and FeSO₄.7H₂O by using 0.05 M H₂C₂O₄.2H₂O solution. To determine Normality, Molarity and g/liter of FeSO₄ 	
$(NH_4)_2SO_4.6H_2O$ and $K_2Cr_2O_7$ by using 0.02 M KMnO ₄ solution.	
 Iodometric:- To determine amount of Cu⁺² in the given solution of CuSO₄.5H₂O 	
using 0.05 N Na ₂ S ₂ O ₃ .5H ₂ O by Iodometric titration.	
• To determine amount of glucose in the given solution of glucose using 0.1 N Na ₂ S ₂ O ₃ .5H ₂ O by Iodometric titration.	
 Iodimetric:- To determine amount of As⁺³ in the given solution of As₂O₃ using 	

Page 14

0.05 N Na ₂ S ₂ O ₃ .5H ₂ O by Iodimetric titration.			
• To determine %W/V of iodine and potassium iodide in given sample			
mixture.			
Non- aqueous titration:-			
• To determine concentration of organic acid into given solution.			
• To prepare 0.1 N perchloric acid and standardize it.			
 Gravimetric Analysis – Weight loss on Heating:- 			
• To determine loss in weight per gram and calculate the percentage			
purity of the given sample of MgCO ₃ /ZnCO ₃ .			
• To determine loss in weight per gram and calculate the percentage			
purity of the given sample of BaCl ₂ .2H ₂ O.			
• To determine loss in weight per gram and calculate the percentage			
purity of the given sample of NaHCO ₃ .			
Party of all group and provide of the state of the			
Inorganic chemistry (10 – 12 experiment)			
> To perform Inorganic qualitative analysis of given unknown salt – Two			
Radicals			
• Na^+ , K^+ , NH^{4+} , Cu^{+2} , Cl^- , Br^- , I^- , NO_2^- , NO_3^- , $Cr_2O_7^{-2}$, CrO_4^{-2} , CO_3^{-2} ,			
Organic Chemistry (12 – 15 experiment)			
> Preparation of Organic Reagents: Tollen's reagent, Neutral FeCl ₃ , Sod.			
Cobalty nitrite solution etc			
> To perform Organic qualitative analysis of given unknown organic			
substance			
✓ Benzoic acid			
✓ Cinnamic acid			
\checkmark α -naphthol			
✓ β-naphthol			
✓ Resorcinol			
\checkmark α -naphthyl amine			
✓ m-dinitro benzene			
✓ Urea			
✓ Benzamide			
✓ Acetanilide			
✓ Benzanilide			
✓ Naphthalene			
✓ Di phenyl amine			
✓ Anthracene			
✓ Pthalic acid			
Physical Chemistry (12-15 experiment)			
 Calibration of Instruments 			
• Thermometer			
Viscometer			
Stalaganometer			
- Stalaganometer			

Determination of Basic Physical Properties:

Surface tension – Parachor:-

- ✓ Find out the surface tension of liquid A, B and C by drop-weight method. Find the value of Parachor of liquids and CH₂ group.
- ✓ Find out the surface tension of NaCl solution, glucose solution and water by drop-weight method and compare the effect of electrolytes on these solutions.
- ✓ To determine the critical micelle concentration (CMC) of given surface active agent (SLS) using stalagnometer.
- \checkmark To study the effect of temperature on surface tension of water.

<u>Viscosity:-</u>

- ✓ To determine relative and absolute viscosity of pure liquid A, B, C & D by Ostwald's viscometer.
- ✓ To determine relative and absolute viscosity of pure liquid 10%, 5%, 2.5% and unknown by Ostwald's viscometer.
- \checkmark To determine the effect of temperature on viscosity of given glycerin.

Adsorption:-

- ✓ To determine the rate of adsorption of given organic acid using activated charcoal.
- ✓ To investigate the adsorption of oxalic acid by activated charcoal and prove the validity of Freundlich and Langmuir adsorption isotherm.
- \checkmark To study comparative study of adsorption capacity of various adsorbents.
- To determine Density with help of hydrometer.

> Thermodynamics:-

- To calculate entropy of vaporization of a given liquid by plotting a graph of log (1/time) vs. log (1/temp.)
 - ✓ Benzene
 - ✓ n-Hexane
- To determine solubility of benzoic acid and find out the heat of solution at room temperature and 40°C temperature by using N/50 NaOH solution.
- To study the effect of surface area of the rate of evaporation of D.W.
- To study of concentration of NaCl solution on the rate of evaporation.

Pedagogic Tools:

- Chalk and Talk
- PPT and Videos.
- Assignment
- Group discussion
- Seminar

Text books:

1. Brian S. Furniss (1989, 5thedition) *Vogel's Textbook of Practical Organic Chemistry*. Hoboken: John Willey & Sons (ISBN: 0-582-462363).

Reference books:

- 2. Hassner, A. (2012, 3rdedition) Organic Syntheses Based on Name Reactions. *Philadelphia*: Elsevier Publishing company (ISBN: 978-0-08-096630-4).
- Jeffery, G. H.; Bassett, J.; Mendham, J.; Denny, R. C. (1989, 5th edition) *Vogel's Textbook of Quantitative Chemical Analysis*. Hoboken: John Willey & Sons (ISBN: 0-582-44693-7).
- 4. Jerry R. Mohrig (2010, 3rdedition) *Techniques in Organic chemistry*. London: W. H. Freeman & Company (ISBN: 1-4292-1956-4).
- 5. Svehla, G. (1979, 5thedition) *Textbook of macro and semi micro qualitative analysis*. London: Logman Publishing group (ISBN: 0-582-44367-9).

Suggested reading / E-resources:

- 1. https://www.extension.harvard.edu/academics/courses/introduction-chemistry
- 2. https://libguides.reading.ac.uk/chemistry/e-resources
- 3. <u>https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=5</u>
- 4. <u>http://library.iiti.ac.in/</u>

Suggested MOOCs:

1. https://swayam.gov.in/nc_details/NPTEL

Methods of Assessment& Tools:

Components of CIE: 40marks

Sr. No	CIA Component	Content	Duration	Marks	Total Marks
1	Test	After Completion of all Assessable Experiments	6 hrs	60 marks (2 Exercise of 30 marks)	30
2.	Observation book & Record	-	-	10	10
Total				40	

Note : Any other assessment tools or methods can be adopted as per requirement of the course.