Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Rajkot Affiliated to Saurashtra University, Rajkot

Syllabus – B. Voc. Medical Laboratory and Molecular Diagnostic Technology

Semester I-II

For Students Admitted from A.Y. 2017-2018 & Onwards

B. Voc. Medical Laboratory and Molecular Diagnostic Technology

SEMESTER - I

17VMLGC01	Core 1: Human Physiology	04 hrs/wk	04 Credits

Objectives:

To enable the students to

- 1. Use anatomical terminology to identify and describe locations of major organs of each system covered and understand the basic organization of human body
- 2. Understand the basic structure and functions of various systems of human body
- 3. Explain interrelationships among molecular, cellular, tissue and organ functions in each system
- 4. Describe the interdependency and interactions of the systems
- 5. Explain contributions of organs and systems to the maintenance of homeostasis

Unit -1 Functional Organization of Human Body

- Introduction to Human Body
- Cells, Tissues and Body Organization
- Tissues different types, functions and its importance
- Musculo-Skeleton System and Body Cavity Appendicular and Axial Skeleton
- Properties and Function of different types of Muscles Smooth, Cardiac and Skeletal Muscle

Unit -2 Circulatory system

- Blood Composition, function, types of Blood Cells and its role in Human Physiology
- Cardiovascular System Blood Vessels, anatomy of Heart, types of Blood Circulation, Cardiac Cycle, BP and Pulse
- Lymphatic System Functional anatomy of Lymph and Lymph Vessels, Lymphatic Organs and Tissues Lymph Node, Spleen, Thymus Gland, MALT

Unit – 3 Respiratory, Digestive and Renal system

- Respiratory System Functional anatomy of different parts, types of Respiration, Gaseous Exchange of CO₂ and O₂
- Digestive System Functional anatomy of Alimentary Tract, Organs of Digestion and their functions, Food metabolism, Digestion, Absorption and Transport
- Renal System Functional anatomy of different parts of renal system, Urine Formation and Elimination, Regulation
- Water, acid-base and electrolyte balance.

(10hrs)

(10hrs)

(09hrs)

Unit – 4 Nervous system and Special Senses

- Nervous System Organization, basic functions, Neurons, Synapse, Neurotransmitter, Central Nervous System, Peripheral Nervous System and Autonomous Nervous System, Brain and Spinal Cord
- Integumentary system Functional anatomy of Skin
- Special senses Eye optic of Vision, Sense of Hearing Ear, Chemical senses Taste and Smell.

Unit – 5 Reproductive System and Growth

- Female Reproductive System functional anatomy of External and Internal parts, Puberty, Oogenesis, Menstruation Cycle
- Male Reproductive System functional anatomy of various parts, Puberty, Spermatogenesis, Fertilization and Embryo Development
- Endocrine System Introduction, basic functions of different Glands and their Secretions

Text Books

- 1. Sujit Chaudhari, Concise Medical Physiology; Central publishing company limited.
- 2. Wilson Katheen, Anne Waugh, Anatomy and Physiology in Health and Illness; Churchill livingstone
- 3. Arthur Guyton and Hall, **Textbook of Medical Physiology;** W.B. Saunders publishing company limited.

Reference Books

- 1. R. L. Bijlani, Understanding Medical Physiology; Jaypee publishing company limited.
- 2. Gerard Tortora, Bryan Derrcikson, **Principles of Anatomy and Physiology;** Wiley publication

(10hrs)

(**09hrs**)

17VMLGC02	Core 2: Basic Biochemistry	04 hrs/wk	04 Credits

•

To enable the students to

- 1. Identify the major classes of polymeric biomolecules and their monomeric building blocks
- 2. Understand the basic chemistry and importance of biomolecules
- 3. Explain the specificity of enzymes (biochemical catalysts), and the chemistry involved in enzyme action.
- 4. Describe the structure of DNA, and explain how it carries genetic information in its base sequence.

Unit - 1 Chemistry of Carbohydrates

Definition and functions

- Monosaccharide, disaccharide, oligosaccharide, Polysaccharide
- Chemical and physical properties (Stereoisomerism, Racemic mixture, Epimers, Enantiomers, Structure of glucose-pyranose and furanose, Mutarotation) (Tautomerization, Reduction properties, oxidation, reduction, dehydration, osazone

formation, formation of esters)

Unit - 2 Chemistry of Protein

- Introduction-Definition and functions
- Structure and classification of amino acids (Standard amino acids and non standard amino acids)
- Properties of amino acids in brief (Physical- Solubility, Melting points, taste, optical properties, Zwitterion, Isoelectric pH, titration)
 (Chemical- Reactions due to -COOH group, Reactions due to -NH₂ group)
- Protein- Definition, classification
- Structure- Primary, secondary, tertiary, quaternary
- Properties (Solubility, Molecular weight, Shape, pI, acidic and basic proteins, precipitation of proteins, denaturation)

Unit - 3 Chemistry of Lipids

- Lipids- Introduction, Definition and functions
- Classification (Simple lipids, complex lipids, derived lipids)
- Properties of lipids (Hydrolysis, Saponification, Rancidity, Lipid peroxidation)

ion, osa

(10hrs)

(**09hrs**)

Introduction-

Classification-

(10hrs)

- Fatty acid (saturated and unsaturated, Essential Fatty Acids)
- TAG, Phospholipids, lipoprotein and glycolipids- structure and functions
- Sterols and its role (ergosterol, Cholesterol)

Unit - 4 Chemistry of Nucleic acids

- Nucleic acid- Functions
- Nucleotides- Purines, Pyrimidines,
- Chargaff's rule, Structure of DNA
- Watson and Crick Model, Types of DNA, A-DNA, B-DNA, Z-DNA
- Structure of RNA molecule and its types (mRNA, rRNA, tRNA)

Unit – 5 Enzymes

- Introduction- Definition, Nomenclature and Classification, Properties
- Coenzymes, Iso-enzymes-Definition, Examples, Importance
- Mechanism of action of enzymes (Enzyme-substrate complex formation, Lock and key model or Fischer's template theory, Induced fir theory or Koshland's model, Substrate strain theory)
- Factors affecting enzyme action
- Enzyme inhibition and regulation (Reversible, Irreversible, Allosteric)

Text Books:

- 1. D M Vasudevan. Text book of Biochemistry for Medical Students; Jaypee Publications
- 2. D Voet, J Voet. Biochemistry; Wiley Publications
- 3. U. Satyanarayan. Basics of Biochemistry; Books and Allied Ltd

Reference Books:

- 1. G P Talwar. TB of Biochemistry and Human Biology; Prentice Hall publications
- 2. J L Jain. Fundamentals of Biochemistry; S Chand publications
- 3. D L Nelson, Lehninger Principles of Biochemistry; W H Freeman Publications

(09hrs)

(10 hrs)

17VMLSC01	Core Skill 1: Human Physiology	06 hrs/wk	06 Credits
-----------	--------------------------------	-----------	------------

The course will enable the student to

- 1. Identify various types of tissues of the body
- 2. Operate the BP instrument
- 3. Collect venous and capillary blood for analysis
- 4. Identify different cells present in blood

List of Practical

- 1. Cell structure
- 2. Epithelial Tissue
- 3. Connective tissue
- 4. Muscle tissue
- 5. Anatomical terms and Skeletal system
- 6. Cavities of the body
- 7. Study of body organs through a visit to anatomy department of medical college
- 8. Blood Pressure measurement
- 9. Pulse rate measurement
- 10. Phlebotomy- Venous blood and Capillary blood collection technique
- 11. Blood smear preparation and differential staining
- 12. Identification of blood cells through microscope

- 1. Tortora, Gerard J.; Derrickson, Bryan. Anatomy & physiology: Workbook; Wiley India Pvt. Ltd.
- 2. Singh, A. K. Anatomy and Physiology for Paramedicals; Jaypee Brothers Medical Publishers (P) Ltd.
- 3. Prasad, S. R.; Sinha, Aruna (Foreword). **Practical Histology for Medical Students;** Jaypee Brothers Medical Publishers (P) Ltd.

17VMLSC02	Core Skill 2 : Basic Biochemistry	09 hrs/wk	09 Credits	
-----------	-----------------------------------	-----------	------------	--

The course will enable the student to

- 1. Understand responsibilities of Laboratory Technologist
- 2. Prepare solutions and reagents
- 3. Analyze the biochemical compound qualitatively and quantitatively
- 4. Operate basic instruments in the laboratory

List of Practical

- 1. Introduction to Medical Laboratory Technology
- 2. The Responsibilities of Laboratory Technologist
- 3. Laboratory Safety
- 4. Laboratory first aid measures
- 5. Introduction to Microscope and its working
- 6. Introduction to Spectrophotometer and flame photometer
- 7. Introduction to common laboratory instruments
- 8. Preparation of solutions and reagents
- 9. Qualitative analysis of carbohydrates
- 10. Estimation of glucose by GOD POD method
- 11. Qualitative analysis of amino acids and proteins
- 12. Estimation of protein by Biuret method
- 13. Estimation of serum total cholesterol
- 14. Estimation of DNA by DPA method
- 15. Estimation of RNA by Orcinol method
- 16. Estimation of serum SGPT/SGOT enzyme level
- 17. Assay of salivary Amylase
- 18. Enzyme assay of Acid phosphatase
- 19. Study the effect of substrate concentration on the activity of enzyme and calculate Km and Vmax
- 20. Study the effect of temperature on the activity of enzyme
- 21. Study the effect of pH on the activity of enzyme

- 1. Praful Godkar, A Textbook of Medical Laboratory Technology; Bhalani Publication
- 2. Shankara, YM Shivaraja; Ganesh, MK; Shivashankara, A R, Laboratory Manual For Practical Biochemistry; Jaypee Brothers Medical Publishers (P) Ltd.
- 3. Jones, Evangeline. **Manual of Practical Medical Biochemistry**; Jaypee Brothers Medical Publishers (P) Ltd.
- 4. Sawhney S.K., Singh, R. (2005). Introductory Practical Biochemistry: Alpha Science International.

SEMESTER – II

17VMLGC03	Core 3: Clinical Pathology and Parasitology	03 hrs/wk	03 Credits
-----------	--	-----------	------------

Objectives:

To enable the students to

- 1. Understand life cycle of various parasites and their disease pathogenesis
- 2. Understand clinical significance of altered physiological parameters
- 3. Understand the clinical manifestation of diseases

Unit - 1 Urine analysis	(10hrs)
 Composition of normal urine Collection and preservation of urine Physical, Chemical and Microscopic examination of urine Clinical significance of urine analysis 	
Unit - 2 Cerebrospinal fluid and Semen analysis	(09 hrs)
 Composition of CSF and semen Collection and preservation of CSF and semen Physical, chemical and Microscopic examination of CSF and semen Clinical significance of CSF and semen analysis 	
Unit – 3 Sputum analysis and Cavity fluids	(09hrs)
 Composition of sputum, Collection and preservation of sputum Physical, chemical and Microscopic examination of sputum Clinical significance of sputum analysis Transudates and exudates Synovial fluid analysis, Peritoneal fluid analysis, Pericardial fluid analysis 	S
Unit - 4 Introduction to parasitology and protozoa	(10hrs)
 Definition of important terms of Parasitology Classification of Parasites Intestinal Amoebae 	
 E. Histolytica and E. coli : Life cycle, Morphology, Disease & Lab Diagr Elagellates of intestine/genitalia 	iosis
<i>Giardia lamblia</i> and <i>Trichomonas vaginalis</i> : Life cycle, Morphology, I Lab Diagnosis	Disease &
Malaria Parasite	

- a. *Plasmodium vivax* : Life cycle, Morphology, disease & lab diagnosis
- b. Differences between P. vivax, P. malaria, P. falcipaum & P. ovale.

Unit-5 Nematodes, Cestode and trematodes

- Intestinal Nematodes: Life cycle, Morphology, disease & lab diagnosis of *Ascaris lumbricoides*, *Enterobius vermicularis* (Thread worm) and *Ancylostoma duodenale* (Hook worm)
- Tissue Nematodes:
 W. Bancrofti Life cycle, Morphology, Disease & Lab Diagnosis
 Cestodes T. solium, T. saginata & E. granulosus.
 Trematodes S. haematobium & F. hepatica

Text Books:

- 1. S.S. Kelkar, A Textbook of Parasitology; Bombay Popular P.
- 2. P. Chakraborty, Parasitology;
- 3. Praful Godkar, Text Book of Medical Laboratory Technology; Bhalani

Reference Books:

- 1. Bernard Henry, **Clinical Diagnosis and Management By Laboratory Methods**, W B Saunders
- 2. Rajesh Karyakarte, Medical Parasitology; Books & Allied ltd

(10hrs)

17VMLGC04	Core 4: Hematology	03 hrs/wk	03 Credits

To enable the students to

- 1. Understand the functions of blood
- 2. Identify the different types of formed elements of blood and their synthesis
- 3. Learn the different disorders of blood cells
- 4. Understand blood coagulation mechanism and its disorders

Unit - 1 Blood cell formation(09 hrs)•Formationofblood- Haemopoeisis, DefinitionSiteof•SiteofHaemopoesisHematopoetic•stem cells and progenitor cellsVerview•Overviewof

Unit - 2 General aspects of Anemia

- Classification of anemia- Morphological and etiological. Iron deficiency anemiamechanism of iron absorption, causes of iron deficiency, signs and symptoms and laboratory findings
- Megaloblastic anemia- Causes, signs and symptoms and laboratory findings
- Hemolytic anemia- Classification, causes, signs and symptoms and lab findings
- Genetic defects of haemoglobin- Sickle cell anemia and thalassaemia(causes, signs and symptoms and laboratory findings in brief)

Unit - 3 General aspects of White cell disorders

- Granulocytes and their disorders such as Neutrophil leucocytosis, disorders of neutrophils function, neutropenia, eosinophil and basophil leucocytosis, Monocytes and their disorders such as monocytosis, disorders of monocyte function
- Lymphocytes and their disorders such as lymphocytosis and immunodeficiency
- Some genetic and acquired WBC disorders- Chediak-Higashi syndrome, May-Hegglin anomaly, Pelger-Huet anomaly, Lysosomal storage disorders, toxic granulation

Unit – 4 Hematological Malignancies

• Classification of leukemia: Overview of Acute leukemia and Chronic leukemia, Clinical features, Laboratory findings

(09 hrs)

(10 hrs)

(10 hrs)

- Malignant lymphoma, types, Clinical features
- Multiple myeloma: Pathogenesis, smouldering myeloma, diagnosis and clinical features
- Myeloproliferative disorders: Polycythaemia vera (PV); Essential thrombocythaemia (ET); and Primary myelofibrosis

Unit – 5 Platelets

- Definition of Homeostasis. Platelets- structure and function
- Blood coagulation- Factors involved in blood coagulation, Mechanism of Intrinsic and extrinsic pathway
- Bleeding disorders due to vascular abnormalities (Inherited: Hereditary haemorrhagic telangiectasia, Ehlers-Danlos syndrome. Acquired: Definitions of Senile perpura, vascular abnormality due to vit C deficiency, Henoch–Schönlein)
- Bleeding disorders due to decreased platelet production (Autoimmune (idiopathic) thrombocytopenic purpura, (WAS), increased platelet destruction (Autoimmune (idiopathic) thrombocytopenic purpura), disorders of platelet function (Glanzmann's disease, acquired disorder)
- Coagulation disorders(Hemophilia, Von willebrand disease, Disseminated intravascular coagulation)

Text Books:

- 1. Peter Haen. Principles of Haematology; WCB Publications
- 2. A.V.Hoffbrand. Essential Hematology; Black well publications
- 3. Kawthalkar, Shirish M. Essentials of Hematology; Jaypee Brothers Medical Publishers (P) Ltd.

Reference Books:

- 1. Emamanuel Besa. Haematology. Harwal publications
- 2. Frank Firkin, C Chester man. **De Gruchy's Clinical Haematology in Medical Practice;** Black well Publications
- 3. Saxene, Renu; Pati, H. P.; Mahapatra, Manoranjan.**Recent Advances in Hematology**; Jaypee Brothers Medical Publishers (P) Ltd.

(10 hrs)

To enable the students to

- 1. Differentiate between various micro and macroorganisms
- 2. Understand the bacterial structure
- 3. Learn the different techniques for the growth and maintenance of bacteria

(10 hrs)

(09 hrs)

(10 hrs)

(10 hrs)

4. Learn different techniques to grow the bacteria in laboratory

Unit 1- Major Groups of Microorganisms

- Difference between Eukaryotes, Prokaryotes and Archaea
- Major groups of Microorganisms
- Eukaryotic Microorganisms: Fungi, Algae and Protozoa
- Bacteria: General characteristics
- Viruses: Plant and Animal viruses, Bacteriophages
- Microbial Taxonomy: Introduction and overview
- Taxonomic ranks of microorganisms

Unit –2 Morphology and fine structure of bacteria

- Bacterial ultra structure, Size, shape and arrangement of bacteria
- Structures external to cell wall-Capsule, Flagella, Pili (Fimbriae), Sheath, Their structure and functions
- Cell wall structure, Functions, Gram nature of bacteria
- Structures internal to cell wall- Cytoplasmic membrane, Inclusion bodies, vacuoles, Nuclear material- Structure and function
- Spore and cyst- Definition, structure, importance and its formation

Unit – 3 Growth and Maintenance of bacteria

- Introduction and Definition of Growth, Modes of Cell division in procaryotes
- Bacterial growth, Various phases of growth, Growth curve
- Batch Culture, Continuous culture
- Total count, viable count
- Bacterial nutrition- oxygen requirement, CO2 requirement, temperature, pH, light

Unit – 4 Control of microbes

- Sterilization and Disinfection: Definition, Instruments used for sterilization, Autoclave, Hot air oven
- Control of microbes by physical agents, Definitions: Sterilization, Disinfection, Sanitization, Antisepsis, Microbiocidal & Microbiostasis, Thermal Death Time,

Thermal Death Point, D-Value, z-Value & F-value, High temperature, Low temperature, Radiation, Filtration

- Control of microbes by chemical agents, Phenol & Phenolic compounds, Alcohols
- Halogens Iodine & Chlorine, Heavy Metals & Dyes, Detergents & Quaternary Ammonium Compounds, Aldehydes & Gaseous agents
- Phenol coefficient method
- Antibiotics, Definition, Classification, Mode of action and uses

Unit – 5 Cultivation of Bacteria and Pure Culture Techniques (09 hrs)

- Nutritional requirements of Bacteria
- Chemical requirement of Growth Bacteriological Media & their Types
- Physical Conditions required for growth Air, pH & Temperature
- Cultivation of Anaerobes
- Selective methods to obtain pure culture
- Isolation techniques and preservation of pure culture, Cultural characteristics

Text Books:

- 1. Michael Pelczar. Microbiology; Tata McGraw Hill publications
- 2. Prescott. Microbiology; Tata McGraw Hill publications

- 1. R M Atlas. Principles of Microbiology; Tata McGraw Hill publications
- 2. Tortora, Funke. Microbiology an Introduction; Pearson publications
- 3. Stanier, R.Y. General Microbiology, 5th Edition; Macmillan publication

17VMLSC04	Core Skill 3: Clinical Pathology and General Microbiology Practical	10 hrs/wk	10 Credits
			1

The course will enable the student to

- 1. Perform the various body fluid analysis and interpret the results
- 2. To identify various parasites
- 3. Understand and perform the staining process and reagent preparation
- 4. Study the microbial cell morphology through microscopy
- 5. Learn the effects of various chemicals on the growth of bacteria.

List of practical:

- 1. Introduction to Body Fluids Analysis
- 2. Routine Urine Analysis
- 3. Semen Analysis
- 4. Sputum Analysis
- 5. CSF Examination
- 6. Synovial Fluid Examination
- 7. Pleural Fluid Examination
- 8. Stool examination
- 9. Permanent slides of cyst and eggs of various parasites
- 10. Preparation of glassware and disposal of laboratory media and cultures
- 11. Preparation of stains, staining reagents and standard solutions
- 12. Preparation of liquid and solid culture media
- 13. Study of bacterial motility by hanging drop method
- 14. Staining of bacteria
- 15. Differential staining- Gram staining
- 16. Acid fast staining
- 17. Special staining
 - Spirochete staining
 - Spore staining
 - Cell wall staining
 - Metachromatic granule staining
 - Capsule staining
- 18. Isolation of bacteria
- 19. Effect of chemicals on microbial growth
- 20. Effect of antibiotics on microbial growth
- 21. Viable count technique
- 22. Growth curve of bacteria by turbidometric method

- 1. Patel. R.J., Patel. K.R. (2009). **Experimental Microbiology, Vol-I,** Ahmedabad: Aditya Publications.
- 2. Patel. R.J., Patel. K.R. (2009). **Experimental Microbiology, Vol-II,** Ahmedabad: Aditya Publications.
- 3. Dubey, R.C., Maheshwari, D.K. (2005). **Practical Microbiology. New Delhi**: S. Chand & Company Limited.
- 4. Sharma, K. (2005). Manual of Microbiology Tools and Techniques. New Delhi: Ane books.

17VMLSC05	Core Skill 4: Hematology Practical	6 hrs/wk	06 Credits

The course will enable the student to

- 1. Observe and count the different types of blood cells
- 2. Interpret the results of the tests
- 3. Learn the coagulation tests
- 4. Learn various disorders of blood through blood cell count and morphology

List of practical:

- 1. Determination of Hemoglobin by Drabkin's method
- 2. Hemoglobin estimation by Sahli's method
- 3. Total RBC count
- 4. Total WBC count
- 5. Total Platelet count
- 6. Differential WBC count
- 7. Peripheral Smear Examination
- 8. Determination of Packed Cell Volume-PCV
- 9. Determination of Erythrocyte Indices
- 10. Determination of Erythrocyte Sedimentation Rate
- 11. Determination of Reticulocyte count
- 12. Determination of Prothrombin Time
- 13. Determination of Bleeding time
- 14. Determination of Clotting time- Capillary method
- 15. Determination of Clotting time- Lee White Method
- 16. Glucose-6-Phosphate Dehydrogenase Screening test
- 17. NESTROF test for thalassemia screening

- 1. Praful Godkar, Text Book of Medical Laboratory Technology; Bhalani
- 2. Bernard Henry, **Clinical Diagnosis and Management By Laboratory Methods**, W B Saunders
- 3. Nageswari, K. Sri; Kothari, Anamika. **Practical Manual of Hematology**; Jaypee Brothers Medical Publishers (P) Ltd.
- Lokwani, D. P.; Agarwal, M. B. (Foreword). The ABC of CBC: Interpretation of Complete Blood Count and Histograms; Jaypee Brothers Medical Publishers (P) Ltd.
- Mehdi, S. R. Laboratory Procedures in Hematology: Manual for DMLT, Undergraduate and Postgraduate Students of Pathology; Jaypee Brothers Medical Publishers (P) Ltd.

17VMI SC06	DSC- Allied Skill 2: Biostatistics	2hrc/wb	02 Crodits
1/VMLSC06	Practical	2hrs/wk	02 Credits

The course will enable the student to

- 1. To learn applications of mathematics for biological parameters
- 2. To learn about performing statistical analysis
- 3. To perform graphical presentation of the clinical data
- 4. To learn to validate the data scientifically using statistical tools

Practical:

- 1. To introduce the applications of Biostatistics
- 2. To do the graphical presentation of the data- Pie chart, Bar graph, Line graph
- 3. To calculate mean, median and mode from the given data
- 4. To perform standard deviation and variance manually and using Microsoft Excel
- 5. Problems based on probability, Normal distribution and Binomial distribution
- 6. To perform the student's t- test
- 7. To perform Chi Square test
- 8. To perform ANOVA test
- 9. To perform correlation analysis
- 10. To perform regression analysis
- 11. Demonstration of common software for statistical analysis

- 1. Nsn Rao, Applied Statistics in Health Sciences; Jaypee
- 2. Khan and Khanum, Fundamentals of Biostatistics
- 3. Daniel, Biostatistics: Basic Concepts and Methodology For Health Science, Wiley
- 4. Parikh M N,Gogtay N, ABC of Research Methodology and Applied Biostatistics Premier of Clinician and Researchers, Jaypee