

Yogi Divine Society inspired, Sarvodaya Kelavani Samaj managed

Shree Manibhai Virani and Smt. Navalben Virani Science College, Rajkot. Autonomous

(Affiliated to Saurashtra University, Rajkot)

Re-Accredited at 'A' Level by NAAC STAR college Scheme & Status by MST-DBT UGC- College with Potential for Excellence (CPE) UGC-DDU KAUSHAL Kendra GAAA – Highest Grade A-1 by KCG, Government of Gujarat GPCB-Government of Gujarat approved Environment Audit Center UGC-Autonomous College

DEPARTMENT OF MATHEMATICS

M.Sc. Mathematics

Enclosure-IB

Shree Manibhai Virani and Smt. Navalben Virani Science College, Rajkot Autonomous (Affiliated to Saurashtra University, Rajkot)

Department of Mathematics M.Sc. MATHEMATICS

Regulations for Students Admitted From A.Y. 2016-2017 & Onwards

ELIGIBILITY

Candidates for the programme of **MASTER OF SCIENCE (MATHEMATICS)** shall be admitted as per the norms prescribed by the Saurashtra University, Rajkot and State Government. All admissions are provisional and subject to the approval of Saurashtra University.

DURATION OF THE PROGRAMME:

The M.Sc. program is full time curriculum run for two years spread over 4 semesters with two semesters in one academic year. There shall not be less than 90 working days for each semester. Examination shall be conducted as continuous internal assessment (CIA) as well as semester end examination (SEE).

EVALUATION

The evaluation shall generally comprise of Continuous Internal Evaluation (CIE) and Semester End Examination (SEE) with percentage weightage as specified below, unless specified otherwise in the Scheme of Instruction and Examinations.

Theory	Courses	Practical Courses		
Continuous Internal Evaluation (CIE)	30%	Continuous Internal Evaluation (CIE)	40%	
Semester End Examination (SEE)	70%	Semester End Examination (SEE)	60%	

For the purpose of computation of credits the following mechanism is adopted:

- a) 1 hour instruction of Theory = 1 Credit
- b) 1 hour instruction of Tutorial = 1 Credit
- c) 2-3 hours instructions of Practical = 1 Credit

ISSUE OF MARK-SHEET AND DEGREE CERTIFICATE

The college shall publish the result after evaluation and with the recommendations of Result Passing Board at the end of each semester. On approval/ratification of the results by the Academic Council, the candidate will be recommended to Saurashtra University for the award of the degree on completion of all the courses and components of the curriculum.

Shree Manibhai Virani and Smt. Navalben Virani Science College, Rajkot (Autonomous) Affiliated to Saurashtra University, Rajkot Department of Mathematics M. Sc. MATHEMATICS

SCHEME OF INSTRUCTION AND EXAMINATIONS For Students Admitted from A.Y. 2016-2017 & Onwards

OBJECTIVES OF THE PROGRAMME:

The curriculum is framed to accomplish the following program objectives which students shall accomplish by the end of their post graduation study:

Students under M.Sc. Mathematics programme should have acquired the following knowledge and skills:

1. Research Skills

- a) A basic understanding of methods and the subject matter of mathematical sciences (including analysis, algebra, applied mathematics, topology and geometry).
- b) The ability to read, understand and write research papers.
- c) The habit to read mathematical texts independently.
- d) Comprehension of the general framework of mathematical research; an understanding of the role of axioms, assumptions, theorems, proofs, and conjectures

2. Computational skills

- a) Proficiency in basic computational methods including pure and applied branches of mathematics.
- b) Facility with computer-aided computations.

3. Analytical skills

- a) An understanding of the basic rules of logic and proficiency in using them.
- b) The ability to give counter examples to prove or disprove the derived/ existing results.
- c) The ability to distinguish a coherent argument from a fallacious one.
- d) The ability to derive general principles from examples.
- e) The ability to formulate mathematical conjectures and to test them.
- f) The ability to complete mathematical proofs.

4. Practical problem solving and mathematical modeling skills

- a) The ability to relate mathematical concepts to problems arising in other disciplines.
- b) The ability to represent problems and ideas precisely in mathematical terms.
- c) The ability to identify facts and techniques relevant to a given problem, and proficiency in using them to solve the problem.

5. Communication skills

- a) The ability to clearly present mathematical concepts, statements, and arguments both in written and oral form.
- b) Knowledge of standard mathematical terminology and notation and the ability to use them properly

SCHEME OF INSTRUCTION AND EXAMINATIONS FOR STUDENTS ADMITTED FROM A.Y. 2016-2017 & ONWARDS

Semester - I							
Course		Hrs	Exam	Max Marks			lit
Code	Course	Inst/ week	Duration (Hrs)	CIA	SEE	Total	Cre
Part –I							
16PMTCC01	Core 1: Algebra – I	4	3	30	70	100	4
16PMTCC02	Core 2: Topology – I	4	3	30	70	100	4
16PMTCC03	Core 3: Functions of Several Variables	4	3	30	70	100	4
16PMTCC04	Core 4: Theory of Differential Equations	4	3	30	70	100	4
Discipline Specific Elective -ID I:16PMTDC01/ 16PMTDC02Classical Mechanics-I/ Fuzzy Mathematics		4	3	30	70	100	4
16PMTCC05 Comprehensive Viva		4	-	-	100	100	4
		24				600	24
Part III							
16PVE01	Value Education	1			Rema	rks	1
	Total	25					25

Semester – II							
Course	Course	Hrs of Duration		Max Marks			Credit
Code		Inst/ week	(Hrs)	CIA	SEE	Total	
Part I							
16PMTCC06	Core 5: Algebra – II	4	3	30	70	100	4
16PMTCC07	Core 6 : Topology – II	4	3	30	70	100	4
16PMTCC08	Core 7: Real Analysis	4	3	30	70	100	4
16PMTCC09	Core 8 : Theory of Partial Differential Equations	4	3	30	70	100	4
16PMTDC03/ 16PMTDC04	Discipline Specific Elective - ID - II: Classical Mechanics – II / Mathematical Methods		3	30	70	100	4
16PMTCC10	Comprehensive Viva	-	-	-	100	100	2
16PMTCC11	Practical : Introduction to Latex	4	3	60	40	100	2
Total		24				700	24

Semester - III							
Course	Course	Hrs Exam of Duratior		Max Marks			Credit
Code		Inst	(Hrs)	CIA	SEE	Total	
Part I							
16PMTCC12	Core 9: Complex Analysis		3	30	70	100	4
16PMTCC13	MTCC13 Core 10: Number Theory – I		3	30	70	100	4
16PMTCC14	Core 11: Discrete Mathematics		3	30	70	100	4
16PMTCC15	C15 Core 12: Linear Algebra		3	30	70	100	4
16PMTDC05/ 16PMTDC06	PMTDC05/ PMTDC06 Discipline Specific Elective - ID - III: Financial Mathematics OR Cryptography		3	30	70	100	4
16PMTCC16	Practical (Programming of Numerical Methods in Scilab)		3	100	-	100	3
Total		28				600	23

	Se	mester	– IV				
Course		Hrs	Exam	Max	Marks		
Code	Course	of Inst	Duration (Hrs)	CIA	SEE	Total	Credit
Part – I							
16PMTCC17	Core13: Functional Analysis	4	3	30	70	100	4
16PMTCC18	Core 14: Number Theory – II	4	3	30	70	100	4
16PMTCC19	Core 15: Graph Theory		3	30	70	100	4
16PMTCC20	Core 16: Differential Geometry		3	30	70	100	4
16PMTDC07/ 16PMTDC08	Discipline Specific Elective - ID - IV: Mathematical Statistics OR Operation Research	4	3	30	70	100	4
16PMTCC21	MTCC21 Comprehensive Viva		3		100	100	2
Part – II							
16PMTCE01	Writing Summery of a Research Paper	-	-	50	-	50	1
16PMTCE02	Field Visit	-	-	50	-	50	1
]]	Fotal	28				700	24
TOTAL OF A	LL SEMESTERS					2600	96

TOTAL MARKS AND CREDIT DISTRIBUTION

S.NO	PART	Total Marks	Total Credits
1.	PART I: Core, Discipline Specific Elective Courses	2500	93
2.	PART II : Competency Enhancement Courses	100	2
3.	PART III: Value Education	Remarks	1
	TOTAL	2600	96

• Part- I: CORE, DSE CORE

CORE COURSES (Theory)

S.No	Semester	Course Code	Course
1.		16PMTCC01	Algebra – I
2.		16PMTCC02	Topology – I
3.	Ι	16PMTCC03	Functions of Several Variables
4.		16PMTCC04	Theory of Differential Equations
5.		16PMTCC05	Comprehensive Viva
6.		16PMTCC06	Algebra – II
7.		16PMTCC07	Topology – II
8.	II	16PMTCC08	Real Analysis
9		16PMTCC09	Theory of Partial Differential Equations
10		16PMTCC10	Comprehensive Viva
11		16PMTCC12	Complex Analysis
12.	TH	16PMTCC13	Number Theory – I
13.	111	16PMTCC14	Discrete Mathematics
14		16PMTCC15	Linear Algebra
15		16PMTCC17	Functional Analysis
16		16PMTCC18	Number Theory – II
17	IV	16PMTCC19	Graph Theory
18		16PMTCC20	Differential Geometry
19		16PMTCC21	Comprehensive Viva

CORE COURSES (Practical)

S.No	Semester	Course Code	Course
1.	Ι	-	-
2.	II	16PMTCC11	Practical : Introduction to Latex
3.	III	16PMTCC16	Practical (Programming of Numerical Methods in Scilab)
4.	IV	-	-

• OTHER CORE COURSES

S.No.	Semester	Course Code	Course
1.	-	-	-

• DSE CORE COURSE (Theory & Practical)

Students are required to opt for any one of the courses offered in each semester respectively.

S No	Somostor		Theory		
3. 1NO	Semester	Course Code	Course		
1	т	16PMTDC01	Classical Mechanics - I		
1.	1	16PMTDC02	Fuzzy Mathematics		
2	II	16PMTDC03	Classical Mechanics - II		
۷.		16PMTDC04	Mathematical Methods		
2	III	16PMTDC05	Financial Mathematics		
5	5 111	111	111 16 F	16PMTDC06	Cryptography
4	4. IV	16PMTDC07	Mathematical Statistics		
4.		IV	1V 16PMTDC0	16PMTDC08	Operation Research

• Part- II COMPETENCY ENHANCEMENT COURSES

S.No	Semester	Course Code	Course
1.	Ι	-	-
2.	Π	-	-
3.	III	-	-
4.	IV/	16PMTCE01	Writing Summery of a Research Paper
5	11	16PMTCE02	Field Visit

• Part III VALUE EDUCATION

S.No	Semester	Course Code	Course
1.	Ι	16PVE01	Value Education

M.Sc. MATHEMATICS

	Semester – I		
16PMTCC01	Core 1: Algebra – I	4hrs/wk	4 Credits

Objectives:

Upon completion of the course students will be able to

- 1. Understand basic principles of algebraic structures like groups, fields rings and division rings.
- **2.** Recognize and understand the concept of Ideals.
- **3.** Recognize and understand the concepts of Euclidean domains, Unique factorization domains, polynomial rings as well as Einstein irreducibility criterion.

Unit 1 Basic concepts of group theory	(10hrs)
• Group	
Abelian group	
Cyclic group	
Normal subgroup	
Unit 2 Homomorphism of Groups	(10hrs)
Quotient group	
Permutation group	
• Group isomorphism and their properties	
• Cayley's theorem, Automorphisms of groups	
Unit 3 Direct Products	(10hrs)
Direct Products	
Finitely Generated Abelian Groups	
• Invariants of a finite Abelian Groups	
Sylow Theorems	
Unit 4 Quick look at basic ring theory	(9hrs)
Euclidean ring	
Quotient ring and zero divisors	
Ideals and ideal rings	
Principal ideal	
Maximal ideal and prime ideal	
Homomorphisms of ideals	
• Sum and Direct Sum of Ideals	
• Nilpotent and Nil Ideals	
Unit 5 Euclidean domains	(9hrs)
Euclidean domains	
Principal Ideal Domains	

Shree M. & N. Virani Science College, Rajkot. M.Sc. Mathematics Page 10 of 28

- Unique Factorization Domains
- Polynomial Rings over UFD
- Polynomial rings over rational field
- Irreducible polynomials
- Einstein irreducibility criterion

- 1. P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra, Second Edition, Cambridge University Press, 1995.
- 2. M. Artin, Algebra, Prentice-Hall of India Private Ltd., New Delhi, 1994.
- 3. J. A. Gallian, Contemporary Abstract Algebra, Fourth Edition, Narosa Publishing House, New Delhi, 1999.
- 4. N. S. Gopalakrishnan, University Algebra, New Age International Private Ltd. Publishers, New Delhi, Sixth Reprint, 1998.
- 5. I. N. Herstein, Topics in Algebra, Second Edition, Wiley Pub., New York, 1975.

	Semester – I		
16PMTCC02	Core 2: Topology – I	4hrs/wk	4 Credits

Upon completion of the course students will be able to

- 1. Recognize and interpret the topological structures and their characterizations.
- 2. Identify and understand the subspace topology and product topology.
- 3. Identify and classify the type of topology including quotient topology and metric topology.
- 4. Understand and differentiate the hierarchy of the topological spaces and their characterizations.

Unit 1 Topological spaces	(10hrs)
Relations and well ordered set	
Topological spaces	
Basis for a Topology	
Unit 2 The Subspace Topology	(10hrs)
The Subspace Topology	
Order Topology	
Unit 3 Product Topology	(10hrs)
Product Topology and related concepts	. ,
Closed sets and limit points	
Unit 4 Continuity	(9hrs)
Continuous functions	
Metric Topology	
Quotient Topology	
Unit 5 Hierarchy in topological spaces	(9hrs)
• T ₁ - spaces	
Hausdorff spaces	
Regular spaces and Normal spaces	

• Urysohn's Lemma and Tietze extension theorem

- 1. Munkres J., Topology: A first course, Prentice-Hall of India Pvt. Ltd, New Delhi.
- 2. Simmons G. F., Introduction to Topology and Modern Analysis, McGraw Hill Company, Tokyo.
- 3. Willards S., General Topology, Addition-Wesley, Reading, 1970.

	Semester – I		
16PMTCC03	Core 3: Functions of Several Variables	4hrs/wk	4 Credits
	· · · · · · · · · · · · · · · · · · ·		

Upon completion of the course students will be able to

- 1. Identify and define functions of the form $T: \mathbb{R}^n \to \mathbb{R}^m$
- 2. Introduce the concepts including limit, continuity for the functions of several variables.
- 3. Understand and criticize the concepts of partial derivative of first and higher order for functions of several variables.
- 4. Recognize and understand the concepts of tensor algebra on finite dimensional vector spaces, alternating and symmetric tensors, wedge products, vector fields and forms as well as their basic properties.

 Unit 1 Euclidean Space and its basic properties Euclidean Space Rⁿ and its basic properties Functions From: Rⁿ → R^m Limit, Continuity and Oscillation Relation between Linear Transformation T: Rⁿ → R^m and m * n Matrices 	(10hrs)
 Unit 2 Differentiation Differentiations and their Basic Prosperities Chain Rule and Jacobian Matrix 	(10hrs)
 Unit 3 Partial Differentiation Partial Derivatives and its Relation with Jacobian Matrix Partial Derivatives of Higher Order 	(10hrs)
 Unit 4 Partial Derivative and Continuity Young's Theorem, and Schwarz's Theorem Directional Derivative its Basic Properties its Relation with Derivative Partial Derivative and Continuity 	(9hrs)
 Unit 5 Tensor algebra on Finite Dimensional Vector Space Tensor algebra on Finite Dimensional Vector Space Alternating and Symmetric Tensors Wedge Product and Relation Among Them Vector Fields and Forms, their Basic Properties 	(9hrs)

- 1. M. Spivak, Calculus on Manifolds, W.E. Benjamin Inc., 1965.
- 2. W. Rudin, Principles of Mathematical Analysis, (Third Edition), Tata McGraw-Hill Publ. Co., New Delhi, 1983.
- 3. S. R. Ghorpade and B. V. Limaye, A Course in Multivariable Calculus and Analysis, Springer, 2010

	Semester – I		
16PMTCC04	Core 4: Theory of Differential Equations	4hrs/wk	4 Credits

Upon completion of the course students will be able to

- 1. Understand the meaning of Ordinary Differential Equations.
- 2. Understand and solve Partial differential equation.
- 3. Identify and solve Gauss hyper geometric equation.
- 4. Understand, identify and solve Cauchy Problem including Charpit's and Jacobi's method.

Unit 1 Review of Simultaneous Ordinary Differential Equations (10hrs)

- Review of Simultaneous Ordinary Differential Equations of First Order
- Second order differential equations: the method of variation of parameters
- Ordinary and singular points, series solution
- Fresenius method: solution in series near regular singular point, point at infinity

Unit 2 Some special kind of equations

- Legendre equation
- Legendre polynomial and its properties
- Bessel's equation
- Bessel's function of first and second kind and their properties

Unit 3 Partial differential equations(10hrs)• Partial differential equation• Partial differential equation of first order

- Compatible system of first order partial differential equations
- Picard's Method of successive Approximations

Unit 4 Gauss hyper geometric equations

- Gauss hyper geometric equation
- Gauss hyper geometric function and its properties

Unit-5 Solution of partial differential equations

- Charpit's and Jacobi's method
- Cauchy Problem

Reference Books:-

- 1. G. F. Simmons, Differential equations with applications and historical notes, McGraw-Hill International Editions, second edition.
- 2. Amarnath, T., Elementary Course in Partial Differential Equations, Narosa Publ. House, New Delhi, 1997.
- 3. Sneddon, I. N., Elements of Partial Differential Equations, McGraw-Hill Publ. Co., 1957.
- 4. Rabenstein, A. L., Introduction to Ordinary Differential Equations, Academic Press.
- 5. Raisinghania, M. D. Advanced Differential Equations, S. Chand \& Co., 1995.
- 6. Grewal, B.S. and Grewal, J.S., Higher Engineering Mathematics, (36th Edition), Khanna Publ., New Delhi, 2000.

Shree M. & N. Virani Science College, Rajkot.

(10hrs)

(9hrs)

(9hrs)

- 7. Somasundaram, D., Ordinary Differential Equations: A First Course, Narosa Publ. House, New Delhi, 2002.
- 8. William E. Boyce, Richard C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition.

	Semester – I		
16PMTDC01	DISCIPLINE SPECIFIC ELECTIVE - ID - I : Classical Mechanics - I	4hrs/wk	4 Credits
Objectives:			
Upon completion of th	e course students will be able to		
 Understand and Understand and Understand and Derive and utili Identify, understand 	l describe elementary principles of motio l criticize equations of motion and classi ize Lagrange's equation of motions. statnd and solve two body central force p	on. fy the dynamical problem.	systems.
Unit 1 Survey of elem	entary principles		(10hr
 Conservation th Conservation th Classification c 	neorem for linear momentum and angula neorem for linear momentum and angula of dynamical system	r momentum for a r momentum for a	a particle a system of part
Unit 2 D'Almbert's p	rinciple and Lagrange's equation of m	notions	(10hr
 Virtual displace Generalized for Mathematical e D'Almbert's pr Lagrange's equ Lagrange's equ Problems on ab 	ement and principle of virtual work. cce in holonomic system expression for principle of virtual work finciple ation for holonomic system ation for conservative non-holonomic sy pove topics	vstem	
 Unit 3 Variational prine Variational prine Calculus of variation of variation of F Derivation of F Derivation of L Cyclic co-ordine Conservation th Problems on about the problems of th	inciple and Lagrange's equations nciple iations nciple lamilton's principle from Lagrange's equ agrange's equations from Hamilton's pr nates neorems	uation inciple	(10hr
Unit 4 Two Body Cen • Reduction to ec • The equations of • The equivalent • The inverse squ	tral force problem Juivalent one body problem of motion and first integrals one dimensional problem and classificat are law of force	tion of orbits	(9hrs)

Unit 5 Equations of Motion and Rigid bodies

- Independent co-ordinates of rigid bodies
- Generalized co-ordinates of a rigid bodies
- Euler angles and Cayley-Klein parameters and related quantities
- Components of angular velocity along the body set of axes
- Euler's theorem on the motion of a rigid body, rate of change of a vector
- The coriolis force
- Euler's equations of motion for a rigid body
- Finite rotations
- Infinitesimal rotations

- 1. H. Goldstein, Classical Mechanics, 2nd Edition, Narosa Publishing House
- 2. C. R. Mondal, Classical Mechanics, Prentice Hall of India Pvt. Ltd.

	Semester – I		
16PMTDC02	DISCIPLINE SPECIFIC ELECTIVE - ID - I Fuzzy Mathematics	4hrs/wk	4 Credits
Objectives:			
Upon completion of	the course students will be able to		
 Recognize at Understand a Identify, und 	nd understand concepts of fuzzy sets an and utilize operations on fuzzy sets. lerstand and solve fuzzy relation equation	d their types. ons.	
Unit 1 Fuzzy sets Fuzzy sets – Basic conception Extension prime 	and their basic types ots , α-cuts ,Additional properties of α-c inciple for Fuzzy sets	uts	(10)
Unit 2 Operations	on Fuzzy sets		(10)
 Operations of 	n Fuzzy sets and Types of operations		(
• Fuzzy compl	ements		
• t-Norms			
Fuzzy UnionCombination	is of operations		
Unit 3 Fuzzy Arith	metic		(10)
 Fuzzy numb 	ers		(101
Arithmetic of	operations on intervals		
• Arithmetic of	operations on Fuzzy numbers		
Unit 4 Fuzzy relati	ons		(9h)
Binary fuzzy	relations		,
 Fuzzy equiva 	alence relations		

Fuzzy ordering relationsFuzzy morphisms

• Fuzzy compatibility relations

Unit 5 Fuzzy Relation Equations

- Fuzzy Relation Equations General discussion
- Problem partitioning, Solution method
- Fuzzy Relation Equations based on Sup-i Compositions Fuzzy Relation Equations based on inf-ωi Compositions

Reference Books:

- 1. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall of India, New Delhi, 2004.
- 2. H.J. Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers Limited, New Delhi, 1991.
- 3. G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall of India, New Delhi, 1995.

Shree M. & N. Virani Science College, Rajkot.

M.Sc. Mathematics Page 18 of 28

(9hrs)

	Semester – II		
16PMTCC06	Core 5: Algebra – II	4hrs/wk	4 Credits
Objectives:			
Upon completion of	the course students will be able to		
 List and under Identify, define Define and version 	erstand advance concepts of Algebra ne and perform operations on mode erify automorphisms and homomorphisms and homomorp	a. ules. phism of modules.	
Unit 1 Division ring Division ring Extension fie Algebraic an	g and Field g and Field elds d transcendental extensions		(10hrs
Unit 2 Exetensions Splitting field Normal extent Multiple root Finite fields Separable extent	ds nsions ts tensions		(10hrs
Unit 3 Automorphi Automorphis Galois extens Fundamental Fundamental	sm fixed fields sm fixed fields sion theorem of Galois Theory theorem of Algebra		(10hrs
Unit 4 Modules • Modules (De • Submodules	finitions and examples) and Operation on modules		(9hrs)
Unit 5 Homomorph Homomorph Completely r Finitely gene	tism of Modules isms of modules and quotient modured reducible module trated modules	iles	(9hrs)
Reference Books: 1. P. B. Bhatta Cambridge U 2. M. Artin, Alg 3. J. A. Gallian	charya, S. K. Jain and S. R. Nagp Jniversity Press, 1995. gebra, Prentice-Hall of India Privat 1, Contemporary Abstract Algebra	aul, Basic Abstract Al e Ltd., New Delhi, 199 a, Fourth Edition, Nar	gebra, Second Edi 4. rosa Publishing Ho

- New Delhi, 1999.N. S. Gopalakrishnan, University Algebra, New Age International Private Ltd. Publishers, New Delhi, Sixth Reprint, 1998.
- 5. I. N. Herstein, Topics in Algebra, Second Edition, Wiley Pub., New York, 1975.

	Semester – II		
16PMTCC07	Core 6 : Topology – II	4hrs/wk	4 Credits
Objectives:			
Upon completion of	the course students will be able to		
 Understand, e Understand, e State and pro List, compare Understand, e 	define and verify connectedness of define and verify nets and filters. we the Tychonoff's theorem. e and classify the separation axiom define and verify concept of compa	Etopological spaces. Is of topological spaces act spaces.	
Unit 1 Connected S Connected sp Components Path compon	paces paces ents		(10hrs)
Unit 2 Nets and Filt Nets and Filt Tychonoff's 	t ers ers theorem		(10hrs)
Unit 3 Product and • The product a • Separation pr	quotient topologies and quotient topologies coperties in products and quotient s	spaces	(10hrs)
Unit 4 Compact spa • Compact spa • Product and o	aces ces quotient of compact spaces		(9hrs)
Unit 5 Locally compLimit point aLocally comp	pactness nd Compactness pactness		(9hrs)

- 1. Munkres J., Topology: A first course, Prentice Hall of India Pvt. Ltd, New Delhi.
- 2. Kelly J. L., General Topology, Van Nostrand Reinhold Company, 1965.
- 3. Willards S., General Topology, Addition-Wesley, Reading, 1970.

	Semester – II		
16PMTCC08	Core 7: Real Analysis	4hrs/wk	4 Credits
Objectives:		·	<u> </u>
Upon completion of	the course students will be able to)	
 Understand, Define and u Define, unde absolute cont State and pro 	define algebra of sets. nderstand measurable sets and va rstand and utilize the concept of c tinuity. we theorems including Holder's in	rious types of measures lifferentiation of monot nequality and Minkows	one functions and ki's inequality.
Unit 1 Algebra of S Algebra of sets Borel sets Lebesgue our Measurable s Lebesgue me	ets ets, σ-algebra of sets ter measure sets easure		(10hrs)
Unit 2 Nonmeasura • A nonmeasura • Measurable I • Littlewood's	ble Set rable set Functions three principles		(10hrs)
Unit 3 Riemann int Riemann inte The Lebesgu The integral The general 1 Convergence	egral egral e integral of a bounded function of of a nonnegative function Lebesgue integral in measure	over a set of finite meas	(10hrs) ure
Unit 4 Differentiati Differentiation Functions of Differentiation Absolute com	on of monotone functions on of monotone functions bounded variation on of an integral tinuity		(9hrs)
Unit 5 lL^p spaces • lL^p spaces • The Holder's • The Minkow • Convergence	inequality ski's inequality and completeness		(9hrs)

- 1. H. L. Royden, Real Analysis, Third Edition, PHI Learning Private Limited (2009) New Delhi.
- 2. N. L. Carothers, Real Analysis, Cambridge University Press (2000).
- 3. G de Barra, Measure Theory and Integration, Wiley Eastern Limited, First Wiley Eastern Reprint (1987).
- 4. V. Karunakaran, Real Analysis, Pearson (2012).
- 5. S. K. Berberian, Fundamentals of Real Analysis, Universitext, Springer (1999).
- 6. I. K. Rana, An introduction to Measure and Integration, Narosa Publishing House, New Delhi.

Semester – II			
16PMTCC09	Core 8 : Theory of Partial Differential Equations	4hrs/wk	4 Credits

Upon completion of the course students will be able to

- 1. Identify and understand the higher order partial differential equations.
- 2. Understand and utilize the methods to solve the given partial differential equations
- 3. Understand and solve the given Boundary value problems and Equipotential surfaces.

 Unit 1 Second order partial differential equations Origin of second order partial differential equations Linear second order partial differential equations with constant coefficients Solutions for f(x; y) to be polynomial Exponential, sin/cos functions General method for homogeneous equations 	(10hrs)
 Unit 2 Classification of second ordered partial differential equations Classification of second ordered partial differential equations Canonical form 	(10hrs)
 Unit 3 Non-linear second order partial differential equations Non-linear second order partial differential equations solution by Monge's method Special case and general case 	(10hrs)
 Unit 4 Second order partial differential equations with variable coefficients Second order partial differential equations with variable coefficients Method of changing variables for special type of equations Separation of variable Method Solution of three special equations –Laplace Wave and diffusion equation Solution of these equations in different coordinate systems 	(9hrs)
 Unit 5 Boundary value problems Boundary value problems Dirichlet boundary value problems Neumann boundary value problems Maximum and minimum principles Harnack's theorem Green's functions Equipotential surfaces 	(9hrs)

- 1. Amarnath, T., Elementary Course in Partial Differential Equations, Narosa Publ. House, New Delhi, 1997.
- 2. Sneddon, I. N., Elements of Partial Differential Equations, McGraw-Hill Publ. Co., 1957
- 3. Grewal, B. S. and Grewal, J. S., Higher Engineering Mathematics, (36th Edition), Khanna Publ. New Delhi, 2000.
- 4. Raisinghania, M. D. Advanced Differential Equations, S. Chand & Co., 1995.
- 5. Phoolan Prasad and Ravindran, R., Partial Differential Equations, Wiley Eastern.

Semester – II			
16PMTDC03	Elective- II Classical Mechanics - II	4hrs/wk	4 Credits

Upon completion of the course students will be able to

- 1. Understand, define and verify Rigid Body Equations of Motion.
- 2. Understand and compare theory of relativity in classical mechanics.
- 3. Derive the Hamilton's equation of motion.
- 4. Understand and utilize the Canonical transformations and Generating functions.

 Unit 1 The Rigid Body Equations of Motion Angular momentum and kinetic energy of motion about a point The inertia tensor and moment of inertia The heavy symmetrical top with one point fixed 	(10hrs)
 Unit 2 Special Relativity in Classical Mechanics The basic program of special relativity The Lorentz transformations Lorentz transformations in real four dimensional spaces Further descriptions of the Lorentz transformation 	(10hrs)
 Unit 3 Covariant four – dimensional formulations Covariant four – dimensional formulations The force and energy equations in relativistic mechanics 	(10hrs)
 Unit 4 Hamilton's equation of Motion Derivation of Hamilton's equation of motion Routh's procedure Derivation of Hamilton's equation from Hamilton's Principle Principle of least action Problem related to above topics 	(9hrs)
 Unit 5 Canonical transformations and Generating functions Poisson's brackets and their properties Hamilton-Jacobi theory Problem related to above topics 	(9hrs)

<u>Reference Books</u>:-

- 1. H. Goldstein, Classical Mechanics, 2nd Edition, Narosa Publishing House
- 2. C. R. Mondal, Classical Mechanics, Prentice Hall of India Pvt. Ltd.

Semester – II			
16PMTDC04	Elective- II Mathematical Methods	4hrs/wk	4 Credits

Upon completion of the course students will be able to

- 1. Understand, define and utilize Fourier series and Summation of infinite series.
- 2. Understand, define and utilize Laplace transform, Inverse Laplace transform, Convolution theorem, Apply these concept to solve the ordinary differential equations.
- 3. Understand and utilize Green's function and its applications, Gram-Schmidt orthonormalization method to Legendre polynomials, Hermite polynomials, Jacobi polynomials, Z-transform.

 Unit 1 Fourier series and applications Fourier series and applications to boundary value problems Summation of infinite series. 	(10hrs)
Unit 2 Fourier integral representation and applications	(10hrs)
• Fourier integral representation and applications	
• Fourier transforms	
Computations of Fourier transforms of functions	
Properties of Fourier transforms	
Unit 3 Convolution and Fourier transform	(10hrs)
Convolution and Fourier transform	
• Applications to the boundary value problems involving Heat equation	
Wave equation and Laplace equations	
Unit 4 Laplace transform	(9hrs)
Laplace transform	、 <i>,</i> ,
Laplace transforms of some functions	
Properties of Laplace transform	
• Inverse transform	

- Convolution theorem
- Applications to solutions of ordinary differential equations
- Applications to the solutions of diffusion equation and wave equation

Unit 5 Green's function and its applications

- Green's function and its applications
- Gram-Schmidt orthonormalization method to Legendre polynomials
- Hermite polynomials
- Jacobi polynomials
- Z-transform

Reference Books:-

- 1. Shankar Rao, Introduction to Partial Differential Equations.
- 2. Courant and Hilbert; Mathematical Methods.
- 3. N. Sneddon; Special Functions of Mathematical Physics and Chemistry.
- 4. L.A. Pipes, Applied Mathematics for Engineers and Physicists.
- 5. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, New Delhi, 2004
- 6. M. D. Raisinghania Advanced Differential Equations.

Shree M. & N. Virani Science College, Rajkot.

M.Sc. Mathematics Page 26 of 28

(9hrs)

Semester – II			
16PMTCC11	Practical : Introduction to Latex	4 hrs/wk	2 Credits

Upon completion of the course students will be able to

- 1. Understand the purpose and nature of LaTeX.
- 2. Understand how LaTeX differs from a word processor.
- 3. Install and utilize LaTeX and its related components successfully on personal computer.
- 4. Create document using LaTeX including the features like line break, fonts size, page breaks.
- 5. Utilize LaTeX and its templates to compose Mathematical documents, presentations, and reports.
- 6. Identify, remember and effectively utilize symbols useful for mathematical type setting.
- 7. Create complete document including title page, index, chapters, tables graphics and bibliography

Introduction to LaTeX

Unit – 1:Historyand Basics of LaTex.

- History of LaTeX, How to install LaTeX,
- Basic Structure of LaTeX Document, Layout Design,
- Advantages and Disadvantages,
- Input file structures, Document class, Page Style, Packages.

Unit – 2:Simple documents and type setting

- Typesetting of Text, Structure of Document,
- Line Break and Page Break,
- Fonts and Size,
- Different Environments,
- Cross references,
- Footnotes, Fancy header.

Unit – 3:Mathematical Type sttting

- Typesetting Mathematics, single equation,
- Mathematical Formulas, multiline single equation, multiple equations,
- array and matrix, command for mathematical symbols,
- theorem and lemmas.

Unit – 4:Use of Graphicx and tables.

- Graphicx package,
- tabular environment,
- bibliography.

Unit – 5: Presentation using LaTeX.

• Preparing presentation using LaTeX.

Shree M. & N. Virani Science College, Rajkot.

Text book:

1. Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to LaTeX 2ε, www.ctan.org.

Reference books:

- 1. George Grätzer (2007), More Math into LaTeX, 4th edition, Springer.
- 2. Michael Doob, A Gentle Introduction to TeX, www.ctan.org.
- 3. F. Mittelbach and M Goossens with Braams, Carlisle, and Rowley, *The LaTeX Companion, second edition,* Addison-Wesley Professional, 2004.

Practical

- Basic Introduction to LaTeX, Structure of LaTeX document, First document produced using LaTeX.
- 2. Use of different fonts, size, apply page break and line break, use command for making text bold, italic, emphasis, underline.
- 3. Document structure using /chapter, /section, /subsection, cross referencing using /label and /ref command, Footnote and use of fancy header package.
- 4. Equation environment, single equation, multi line single equation, multi equations, mathematical symbols.
- 5. How to write array and matrix in LaTeX.
- 6. Writing theorem and lemma using LaTeX.
- 7. Preparing Tables using LaTeX, Use of Graphicx package in LaTeX.
- 8. How to write bibliography using LaTeX.
- 9. Preparing a basic beamer presentation
- 10. Preparing beamer presentation using overlay, color, slide transaction, use of different themes, use of graphics.