Enclosure-XI (B)

Sarvodaya Kelavani Samaj managed, Shri Manibhai Virani and Smt. Navalben Virani Science College

(Autonomous)

(Affiliated to Saurashtra University, Rajkot) Re-Accredited at 'A' Level by NAAC STAR college Scheme & Status by MST-DBT UGC- College with Potential for Excellence (CPE) UGC-DDU KAUSHAL Kendra GAAA –Grade A-1 by KCG, Government of Gujarat GPCB-Government of Gujarat approved Environment Audit Center Nodal Center for capacity building by GSBTM

DEPARTMENT OF CHEMISTRY

Syllabi for Generic Elective Courses for PG Program Offered to Other Department, Semester-III Effective From 2018-19 & Onwards

Semester - III						
Course Code	Course Title	Course Credit and hrs				
19PCEGE01	Molecular Spectroscopy	2 Credits - 2 hrs / wk				

Course Description:

This course focuses on several topics in Molecular Spectroscopy and will contain: principles, theory, instrumentation and Identification of molecules and materials with advanced spectroscopy and spectrometry such as UV-Vis spectroscopy, FT-IR spectroscopy, Mass Spectrometry, NMR spectroscopy.

Course Purpose:

- To understand and describe Fundamental of Molecular Spectroscopy.
- To have a basic understanding of the theoretical background of the measurement principles typically used in spectroscopy and spectrometry.
- To discuss instrumentation of UV-Vis, FT-IR, NMR Spectroscopy and Mass Spectrometry.

Course Outcomes: Upon completion of this course, the learner will be able to				
CO No.	CO Statement	Blooms		
		taxonomy		
		Level		
		(K1 to K6)		
CO_1	Understand the principle, fundamental theory of various	K1, K2		
	Spectroscopy techniques.			
CO ₂	Discuss Instrumentation of UV-Vis, FT-IR, NMR Spectroscopy	K2		
	and Mass Spectrometry.			
CO ₃	Characterize and Interpret spectroscopic data to perform	K3		
	qualitative analysis of unknown compounds.			
CO ₄	Elucidate structures of the unknown compounds by	K3, K4		
	amalgamation of various spectroscopic techniques			
CO ₅	Differentiate various applications of Characterization techniques	K3		
	to medicinal and pharmaceutical field.			

Course Content		Hours	
Module-I	: In	troduction to Spectroscopic Techniques:	06 hrs
	\triangleright	Types of Analytical techniques	
	\triangleright	Introduction of Instrumental methods and its classification	
	\triangleright	Overview of spectroscopic methods based on wave length regions	
		of Electromagnetic radiation	
	\triangleright	Properties of Electromagnetic radiation	
Module-I	[:U	V Spectroscopy:	05 hrs
	\triangleright	Introduction to UV and Visible	
	\triangleright	Principle & Theory of UV spectrometry	
	\triangleright	Instrumentation	
	\triangleright	Interpretation of UV spectra	
	\triangleright	Applications UV spectroscopy.	
Module-I	[] :]	Infrared Spectroscopy:	05 hrs
	\triangleright	Introduction to IR	
	\triangleright	Principle & Theory of Infrared absorption spectroscopy	
	\triangleright	Infrared sources	
	\triangleright	Sample handling techniques	
	\triangleright	Instrumentation	
	\triangleright	Applications and limitations of IR spectroscopy.	
Module-I	V:	Mass Spectrometry:	06 hrs
	\triangleright	Introduction	
	\triangleright	Principle	
	\triangleright	Theory and components of mass spectrometers	
	\triangleright	Different ionization and detection techniques	
	\triangleright	Types of ions produced in mass spectrometer	
	\triangleright	Applications of Mass spectrometry.	
Module-V	' : N	uclear Magnetic Resonance Spectroscopy:	08 hrs
		> Introduction	
		NMR active nuclei and Basic Theory	
		NMR Spectrometer, internal Standard & solvent	
		 Signals, Equivalent and Non equivalent Protons 	
		 Shielding, Deshielding and Chemical shift 	
		 Factors affecting on chemical shift 	
		Spin-spin coupling (multiplicity) and coupling constant (J)	
		 Applications of Nuclear magnetic resonance spectroscopy 	

Suggested laboratory experiments:

• Note: NA

Pedagogic tools:

- Chalk and Board, Power point presentation, models
- LCD and Videos.
- Live Demonstration of Instruments

Text book:

- 1. Analytical Chemistry by Christian Gary D.(ISBN-9780471214724)
- 2. Fundamentals of Analytical Chemistry by Skoog Douglas A.(ISBN 9781285640686)
- 3. Stahl, E. (1969, Second edition) Thin-Layer Chromatography: A Laboratory Handbook. New Berlin: Springer. (ISBN: 978-3-642-88488-7).
- 4. Separation techniques by Satyender Ahuja.

Reference Books:

- 1. Instrumental Methods of chemical analysis by B.K. Sharma.(ISBN 9788182830196)
- 2. Pharmaceutical analysis (Vol.II) Dr. A. V. Kasturie, Dr. S.G. Wadodkar.(ISBN-13: 978-8185790084)
- 3. Instrumental Methods of chemical analysis Gurdeep R. Chatwal.(ISBN-13: 978-9351420880)
- H.A. strobe chemical instrumental A schematic Approach 2nd Edition, Addison Wesely, Reading mass.

Laboratory Manual/ Book

• Not applicable.

Suggested reading / E-resources

- http://www.nptel.ac.in/courses/104103069/#
- http://ocw.mit.edu/courses/chemistry/

Guidelines and Evaluation Norms for Generic Elective Course- PG Programme Generic Elective Courses:

Generic Elective (GE) Course: An elective course chosen generally from an unrelated discipline/subject, with an intention to seek exposure is called a Generic Elective.

A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa and such electives may also be referred to as Generic Elective.

Generic Elective Course:

- a) Generic Elective Course courses of 2 credits, 100% CIA courses.
- **b)** Choice from among the List-GE

S.N.	Component	Content	Duration	Marks	Sub	
			if any		Total	
	Test-I	1 st &2 nd uni	1hrs.	20 (set for		
		t		20marks		
				Objective)		
1.	Test-II	All 5 units	3 hrs.	70 (set for	90	
1.				70marks)	Marks	
				Question		
				Paper Pattern		
				enclosed in		
	A colores of T			Annexure-I		
	Assignment-I			5 (Set for 20 Marks)	10	
2.				5(Set for 20)	10	
	Assignment-II			Marks)	Marks	
				IVIAINS)		
Total						

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Rajkot Affiliated to Saurashtra University, Rajkot

Question Paper Pattern - Test-II - Generic Elective Courses-PG Program

Effective from A.Y. 2018-19& Onwards

Duration of Examination: 3 Hrs.

1.

Max. Marks: 70

<u>Part A</u> (45 Questions X 1 Mark = 45 Marks)

Answer ALL questions

↓
45.
Part B (5 Questions X5 Marks = 25 Marks) Answer <u>ALL</u> questions
46a.
OR
46b.
↓
50a.
OR
50b.