Enclosure-VIII

Sarvodaya Kelavani Samaj managed, Shri Manibhai Virani and Smt. Navalben Virani Science College (Autonomous) (Affiliated to Saurashtra University, Rajkot)

Re-Accredited at 'A' Level by NAAC STAR college Scheme & Status by MST-DBT UGC- College with Potential for Excellence (CPE) UGC-DDU KAUSHAL Kendra GAAA –Grade A-1 by KCG, Government of Gujarat GPCB-Government of Gujarat approved Environment Audit Center Nodal Center for capacity building by GSBTM

DEPARTMENT OF CHEMISTRY

Syllabi, Evaluation Norms & Guidelines for the courses unique to the Department

M.Sc. Chemistry Program

Semester - I			
Course Code	Course Title	Instruction hrs	Course Credit
19PCECE01	CEC-I: Scientific Writing (Chem Draw Tools)	1 hrs / wk	2 Credits Evaluation at the End of SEM-2

Course Description:

Literature survey and problem finding is required for research work. The course various tools like Chem Draw, Chem Sketch and other e-sources. The course consisting topics about the chemistry structure drawing tools.

Course Purpose:

- 1. To understand the significance of Chem Draw software.
- 2. To understand the NPTEL, NLIST search engine tools for scientific interest.
- 3. To be able to draw chemistry structures using chemdraw tools.

Course O	Course Outcomes: Upon completion of this course, the learner will be able to		
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)	
CO ₁	Understand the application of chembiodraw and chemsketch for drawing reactions in various scientific journals.	K1, K2	
CO ₂	Generate IUPAC nomenclature from structures & vice versa	K2, K3	
CO ₃	Predict and correlate physicochemical & spectral properties and characteristics of chemical / materials	K2, K3	
CO ₄	Study spatial arrangement of molecules and energy minimization.	K1, K2	
CO ₅	Search & retrieve authenticated scientific reference materials.	K2, K3,K4	

Course Content

Module-I : Chem Draw Software:

Hours

Introduction of ChemDraw Ultra, Chem Sketch, Drawing chemical reaction, Structure drawing using templates, Structure to name and name to structure, Drawing mechanism of reaction, Diagram of Distillation Assembly, Chiral Structure Draw. Drawing apparatus used in laboratory.

Reproducing reaction scheme from given research paper.

Introduction of 3D Chemdraw ultra, export chemical structure from 2D to

3D, run energy minimization of given molecule, predicting logP value &

other physicochemical parameters for given set of molecules.

Module-II : NLIST:

04 hrs

Introduction of NLIST website, available e-resources, access of e-books and research articles, e-learning through NPTEL

Shri M. & N. Virani Science College (Autonomous), M.Sc. Chemistry(Unique course), BoS -05/06/19 Page 2 of 10

Suggested laboratory experiments:

• Computer based experiments

Pedagogic tools:

• Computer, Power point presentation, Access of e-books and research articles.

Text books

• F. J. Waller, Writing chemistry patents and intellectual property: A practical Guide,

Wiley, 2002.

Reference Books:

• Not applicable

Laboratory Manual/ Book

• Not applicable

Suggested reading / E-resources

• E-journals

Suggested MOOCs

٠

Methods of assessing the Course Outcomes

The COs of the course will be assessed through

• Assignment-1

Semester - II			
Course Code	Course Title	Instruction	Course
		hrs	Credit
19PCECE01	CEC-I: Scientific Writing	1 hrs / wk	2 Credits
	(Research Review and		Evaluation
	Presentation)		at the End
			of SEM-2

Course O	Course Outcomes: Upon completion of this course, the learner will be able to		
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)	
CO ₁	Search & retrieve authenticated scientific reference materials.	K1, K2	
CO ₂	Investigate literature search using NLIST, NPTEL, Science Direct and various E-resources.	K2, K3	
CO ₃	Understand variance between various Full paper, article, patent, communication and review article.	K2, K3	
CO ₄	Understand the IPR policy, patent filling, significance and Intellectual patent applications.	K1, K2	
CO ₅	Know that how to write research/review article.	K2, K3,K4	

Hours

08 hrs

04 hrs

Course Content

Module-I : Articles Review & Scientific writing

- Difference between Full article, letters, note, communication, mini review and review with case study.
- Writing research article: Introduction, result & discussion, chemistry, Experimental section, acknowledgement & references.

Module-II : Patent

- Introduction to IPR (Intellectual property rights), Patent searching, downloading, reading and filling.
- Difference between patent and provisional patent.
- Significance of Patent.

Suggested laboratory experiments:

• Computer based presentation

Pedagogic tools:

• Computer, Power point presentation

Text books

• Not applicable

Reference Books:

• Not applicable

Laboratory Manual/ Book

• Not applicable

Suggested reading / E-resources

- E-journals/ E-book
- Suggested MOOCs
 - •

Methods of assessing the Course Outcomes

The COs of the course will be assessed through

• Assignment-II

• Presentation

• CBT

19PCECE02 STC/ Onli Cer	CEC-II: e Courses / Professional ification Courses	2 hrs./wk	2 Credit Evaluation at the End of SEM-IV
----------------------------	--	-----------	---

The course will be evaluated through continuous internal evaluation only, all the following components are compulsory for the evaluation of the course.

19PCECE02	STC Advance Instrumentation Techniques IR, HPLC, GCMS, MPAES, AAS	2 Credits Evaluation at the End of SEM-IV
-----------	---	--

Course Description: The course comprises of theoretical and practical knowledge of IR, GCMS, HPLC, AES & AAS and hands on training.

Course Purpose: Able to handle the instruments like IR, HPLC, GCMS, MPAES, AAS and can analyses the spectra.

Course O	Course Outcomes: Upon completion of this course, the learner will be able to		
CO No.	CO Statement	Blooms taxonomy Level (K1 to K6)	
CO1	Prepare samples for IR analysis using different cells and functional group identification by analysis of spectra.	K5, K5	
CO ₂	Knowledge about working & characteristic of each part of Gas chromatography and able to handle the instruments and can separate the mixtures of multi compounds.	K4, K5	
CO ₃	Able to handle the Mass spectrophotometer and knowledge of working phenomena of each part of instrument.	K4, K5	
CO4	Analyses the sample quantitatively to find out the % by different methods and calculations and identify it qualitatively. Preparation of sample solution of different concentrations.	K4, K5	
CO ₅	Able to handle the instrument and identify the various elements in sample applying knowledge.	K4, K5	

Course Content Module-I : Analysis by Fourier Transform Infrared spectroscopy	Hours 5 hrs
• Introduction, construction, working and difference between FTIR & Dispersive IR. Advantages of FTIR over dispersive IR.	
• Explanation of SOP & Demonstration of working of instrument on the basis of SOP.	
 Analysis of solid and liquid sample preparation using KBr pellet method and study of spectrum obtained. Few case studies. 	
 Module-II : Analysis by Gas chromatography Introduction, Explanation, demonstration of each part of GC 	5 hrs
 and it's working setting of parameters on the basis of SOP. Actual practice of injection and handling of instrument. Sample preparation and calculation. Separation of mixture to determine the composition 	
 Separation of mixture to determine the composition quantitatively by standard method. Few case studies. 	
 Module-III : Analysis by Mass spectrometry Principle, Introduction, explanation and demonstration of each part of MS on the basis of SOP. Sample preparation and analysis of solid and liquid samples. Interpretation of spectra based on fragmentation pattern. 	5 hrs
 Module-IV : Analysis by High Performance Liquid Chromatography Introduction to liquid chromatography and types of chromatography. Construction and working of the instrument, as per the SOP basis. Explanation and preparation of solution, calculation and 	6 hrs
 quantitative determination. Preparation of solution, practicing of injecting the sample individually. Calculation using graph and formula, conclusion by result. 	
 Few case studies. Module V : Analysis by Atomic Emission and Absorbance Spectroscopy. 	6 hrs
 Module-V : Analysis by Atomic Emission and Absorbance Spectroscopy Introduction, explanation and working phenomena of each part of MPAES and AAS basis on SOP. Sample and standard solution preparation and calibration. Identification of elements present in samples using spectra. Few case studies. 	0 IIIS
 Suggested laboratory experiments: Experiments/Demonstration based on IR, HPLC, GCMS, MPAES and AAS instruments. 	

Pedagogic tools: Shri M. & N. Virani Science College (Autonomous), M.Sc. Chemistry(Unique course), BoS -05/06/19 Page 7 of 10

- Lectures
- Group exercise or projects
- Demonstrations
- Practice sessions

Text books

- Pavia, D. L., Lampman, G. M., et al 2015. Introduction to spectroscopy. India: Cengage Learning India Private Limited.
- Snyder, L. R., Kirkland, J. J. 2010. Practical HPLC Method development 2nd edition. Wiley-Interscience.
- Moore, G. L. 1988. Introduction to Inductively Coupled Plasma Atomic Emission Spectrometry. Elsevier Science.

Laboratory Manual/ Book

• Lab Manual of Industrial Chemistry Department, Shree M. & N. Virani Science College, Rajkot.

Suggested reading / E-resources

- E-Journals, Book
- Chromatography animation Video

Suggested MOOCs

•

Methods of assessing the Course Outcomes

The COs of the course will be assessed through

- Assignments
- Practical's
- Seminar

Evaluation Norms & Guidelines for the courses unique to the Department

M.Sc. Chemistry Program

SEMESTER I & II

19PCECE01 CEC-I: Scientific Writing	Evaluated at the End of SEM-II	Credit: 2
---	--------------------------------------	-----------

Continues Internal Assessment Pattern:

Components	Detail	Marks
Assignment- 1	Drawing of Reaction Scheme and Mechanism	20
Assignment-2	Information retrieval: (e-books, research articles& reviews) using NLIST & Science Direct	20
Seminar	Review of Literature Presentation	20
Computer Based Test	Computer Based Test	40
	Total	100

At the end of the II Semester no marks be given, only remarks will be given as follows:

Range of Marks	Remarks
91-100	Excellent
76-90	Very good
60-75	Good
40-59	Fair
Below 40	Not completed

Guideline for Scientific Writing:

- 1. There is no passing minimum for CIA.
- 2. There is no provision for reappearance or improvement of marks in CIA.
- 3. All the components of CIA evaluation are compulsory.
- 4. After completion of the course students will get remarks.

19PCECE02	STC Advance Instrumentation Techniques	2 Credits Evaluation at the End of
	IR, HPLC, GCMS, MPAES, AAS	SEM-IV

STC				
Internal (50 Marks)	Component	Marks		
	Active Participation/Attendance	10		
	Assignments (Task/Seminar)	10		
	Practical performance	10		
	Objective Test	20		
Total	· -	50		

MOOC's/ Competitive Exams/ Professional Certification Courses

On submission of **MOOC's/ Competitive Exams/ Professional Certification Courses** passing certificate students will earn 2 credits.

At the end of the semester no	marks he given.	only remarks	will be given	as follows:
At the chu of the semester no	marks be given,	Unity remarks	will be give	1 45 10110 115.

Range of Marks	Remarks
45-50	Excellent
40-44	Very good
30-39	Good
20-29	Fair
Below 20	Not completed

Guideline for STC/Online Courses/ Professional Certification Courses:

- 1. There is no passing minimum for CIA.
- 2. All the components of CIA evaluation are compulsory.
- 3. The candidate is permitted to appear for Objective test for STC only if he/she has minimum of 80% attendance.
- 4. After submission of the online / professional certification course passing certificate, the students will earn 2 credits.
- 5. After completion of the STC students will get remarks and earn 2 credits.